Capteur de pression process CPT-2x

Esclave pour pression différentielle électronique Capteur céramique

Capteur de pression process CPT-2x

E

Table des matières

1	A propos de ce document					
	1.1	Fonction				
	1.2	Personnes concernées	4			
	1.3	Symbolique utilisée	4			
2	Pour	Pour votre sécurité				
_	2.1	Personnel autorisé				
	2.2	Utilisation appropriée				
	2.3	Avertissement contre les utilisations incorrectes				
	2.4	Consignes de sécurité générales	5			
	2.5	Conformité UE	6			
	2.6	Installation et exploitation aux États-Unis et au Canada	6			
3	Door	ription du produit	7			
3	3.1	Structure				
	3.1	Fonctionnement				
	3.3	Procédures de nettoyage supplémentaires				
	3.4	Emballage, transport et stockage				
4	Mont	age				
	4.1	Remarques générales				
	4.2	Informations concernant les applications à oxygène				
	4.3	Ventilation et compensation de pression				
	4.4	Combinaison maître - esclave				
	4.5	Mesure de niveau				
	4.6 4.7	Mesure de pression différentielle				
	4.7 4.8	Mesure de densité				
	4.9	Mesure de niveau à compensation de densité	24			
	4.10	Boîtier externe				
_						
5		ordement à l'alimentation en tension				
	5.1	Préparation du raccordement				
	5.2	Raccordement				
	5.3	Boîtier à chambre unique				
	5.4 5.5	Boîtier externe pour version IP68 (25 bars)				
		·				
6	Mise en service avec le module de réglage et d'affichage					
	6.1	Paramétrage - Paramétrage étendu	33			
7	Diogr	nostic, gestion des actifs et service	47			
1	_	Entretien				
	7.1 7.2	Nettoyer - raccordement hygiénique avec écrou flottant à encoche				
	7.2	Élimination des défauts				
	7.3	Remplacement des composants de raccordement au process en cas de version IP68	40			
	7.7	(25 bars)	48			
	7.5	Réparation de l'appareil				
_		·				
8		ontage				
	8.1	Étapes de démontage				
	8.2	Recyclage	50			

Table des matières

9	Annexe		
	9.1	Caractéristiques techniques	. 51
		Calcul de l'écart total	
	9.3	Exemple pratique	. 62
	9.4	Dimensions	65
	9.5	Marque déposée	73

Consignes de sécurité pour atmosphères Ex

Respectez les consignes de sécurité spécifiques pour les applications Ex. Celles-ci font partie intégrante de la notice de mise en service et sont jointes à la livraison de chaque appareil disposant d'un agrément Ex.

Date de rédaction : 2020-05-12

1 À propos de ce document

1.1 Fonction

La présente notice contient les informations nécessaires au montage, au raccordement et à la mise en service de l'appareil ainsi que des remarques importantes concernant l'entretien, l'élimination des défauts, le remplacement de pièces et la sécurité de l'utilisateur. Il est donc primordial de la lire avant d'effectuer la mise en service et de la conserver près de l'appareil, accessible à tout moment comme partie intégrante du produit.

1.2 Personnes concernées

Cette mise en service s'adresse à un personnel qualifié formé. Le contenu de ce manuel doit être rendu accessible au personnel qualifié et mis en œuvre.

1.3 Symbolique utilisée

Information, remarque, conseil : Ce symbole identifie des informations complémentaires utiles et des conseils pour un travail couronné de succès.

Remarque : ce pictogramme identifie des remarques pour éviter des défauts, des dysfonctionnements, des dommages de l'appareil ou de l'installation.

Attention : le non-respect des informations identifiées avec ce pictogramme peut avoir pour conséquence des blessures corporelles.

Avertissement: le non-respect des informations identifiées avec ce pictogramme peut avoir pour conséquence des blessures corporelles graves, voire mortelles.

Danger : le non-respect des informations identifiées avec ce pictogramme aura pour conséquence des blessures corporelles graves, voire mortelles.

Applications Ex

Vous trouverez à la suite de ce symbole des remarques particulières concernant les applications Ex.

Liste

Ce point précède une énumération dont l'ordre chronologique n'est pas obligatoire.

1 Séquence d'actions

Les étapes de la procédure sont numérotées dans leur ordre chronologique.

Élimination des piles

Vous trouverez à la suite de ce symbole des remarques particulières concernant l'élimination des piles et accumulateurs.

2 Pour votre sécurité

2.1 Personnel autorisé

Toutes les manipulations sur l'appareil indiquées dans la présente documentation ne doivent être effectuées que par du personnel qualifié, spécialisé et autorisé par l'exploitant de l'installation.

Il est impératif de porter les équipements de protection individuels nécessaires pour toute intervention sur l'appareil.

2.2 Utilisation appropriée

Le CPT-2x est un capteur esclave pour la mesure de pression différentielle électronique.

Vous trouverez des informations plus détaillées concernant le domaine d'application au chapitre "Description du produit".

La sécurité de fonctionnement n'est assurée qu'à condition d'un usage conforme de l'appareil en respectant les indications stipulées dans la notice de mise en service et dans les éventuelles notices complémentaires.

2.3 Avertissement contre les utilisations incorrectes

En cas d'utilisation incorrecte ou non conforme, ce produit peut être à l'origine de risque spécifiques à l'application, comme par ex. un débordement du réservoir du fait d'un montage ou d'un réglage incorrects. Cela peut entraîner des dégâts matériels, des blessures corporelles ou des atteintes à l'environnement. De plus, les caractéristiques de protection de l'appareil peuvent également en être affectées.

2.4 Consignes de sécurité générales

L'appareil est à la pointe de la technique actuelle en prenant en compte les réglementations et directives courantes. Il est uniquement autorisé de l'exploiter dans un état irréprochable sur le plan technique et sûr pour l'exploitation. L'exploitant est responsable de la bonne exploitation de l'appareil. En cas de mise en œuvre dans des produits agressifs ou corrosifs, avec lesquels un dysfonctionnement de l'appareil pourrait entraîner un risque, l'exploitant a l'obligation de s'assurer du fonctionnement correct de l'appareil par des mesures appropriées.

L'utilisateur doit respecter les consignes de sécurité contenues dans cette notice, les standards d'installation spécifiques au pays et les règles de sécurité et les directives de prévention des accidents en vigueur.

Des interventions allant au-delà des manipulations décrites dans la notice technique sont exclusivement réservées au personnel autorisé par le fabricant pour des raisons de sécurité et de garantie. Les transformations ou modifications en propre régie sont formellement interdites. Pour des raisons de sécurité, il est uniquement permis d'utiliser les accessoires mentionnés par le fabricant.

Pour éviter les dangers, il faudra tenir compte des consignes et des signalisations de sécurité apposées sur l'appareil.

2.5 Conformité UE

L'appareil satisfait les exigences légales des Directives UE concernées. Avec le sigle CE, nous confirmons la conformité de l'appareil à ces directives

Vous trouverez la déclaration de conformité UE sur notre page d'accueil

L'appareil n'est pas soumis à la Directive UE sur les appareil sous pression du fait de la structure de ses raccord process s'il est exploité à des pressions process ≤ 200 bar.

2.6 Installation et exploitation aux États-Unis et au Canada

Ces instructions sont exclusivement valides aux États-Unis et au Canada. C'est pourquoi le texte suivant est uniquement disponible en langue anglaise.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code.

3 Description du produit

3.1 Structure

Compris à la livraison

La livraison comprend:

- Capteur de pression CPT-2x capteur esclave
- Câble de raccordement confectionné, presse-étoupe desserré

Le reste de la livraison se compose de :

- Documentation
 - Notice de mise en service simplifiée CPT-2x
 - Certification de contrôle pour capteur de pression
 - Manuels d'instructions pour des équipements d'appareil en option
 - Les "Consignes de sécurité" spécifiques Ex (pour les versions Ex)
 - Le cas échéant d'autres certificats

Information:

Dans la notice de mise en service, des caractéristiques de l'appareil livrées en option sont également décrites. Les articles commandés varient en fonction de la spécification à la commande.

Domaine de validité de cette notice de mise en service

La présente notice de mise en service est valable pour les versions d'appareil suivantes :

- Matériel de version supérieure ou égale à 1.0.0
- Version du logiciel à partir de 1.0.0

Remarque:

Vous trouverez la version du logiciel et du matériel de l'appareil de la manière suivante :

- Sur la plaque signalétique de l'électronique
- Dans le menu de réglage sous "Info"

Plaque signalétique

La plaque signalétique contient les informations les plus importantes servant à l'identification et à l'utilisation de l'appareil :

Fig. 1: Présentation de la plaque signalétique (exemple)

- 1 Type d'appareil
- 2 Espace réservé aux agréments
- 3 Caractéristiques techniques
- 4 Code de produit
- 5 Numéro de série de l'appareil
- 6 Symbole pour classe de protection d'appareil
- 7 Numéros ID documentation de l'appareil

3.2 Fonctionnement

Domaine d'application

Le CPT-2x est approprié aux applications dans tous les secteurs industriels. Il est utilisé pour la mesure des types de pression suivants.

- Surpression
- Pression absolue
- Vide

Produits à mesurer

Les produits à mesurer sont des gaz, des vapeurs et des liquides Suivant le raccord process et le type de mise en œuvre, les produits mesurés peuvent également être visqueux ou contenir des composants abrasifs.

Grandeurs de mesure

La mesure de pression différentielle électronique convient à la mesure des grandeurs de process suivantes :

- Niveau
- Débit
- Pression différentielle
- Densité
- Interface
- Niveau à compensation de densité

Pression différentielle électronique

Pour une mesure de pression différentielle électronique, le capteur esclave CPT-2x est combiné avec un capteur de la série CPT-2x.

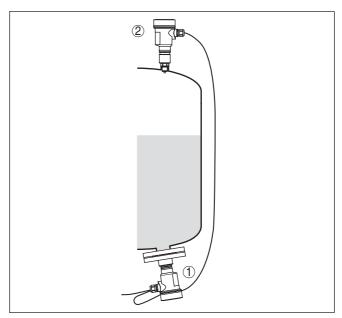


Fig. 2: Exemple de pression différentielle électronique pour la mesure de niveau dans un réservoir sous pression

- 1 CPT-2x
- 2 CPT-2x capteur esclave

Les capteurs sont reliés par une ligne blindée à quatre fils. La valeur de mesure du capteur esclave est mesurée et calculée. L'alimentation et le paramétrage se font à l'aide du capteur maître.

Information:

Les versions de capteur "Pression relative à compensation climatique" ainsi que "Boîter à deux chambres" ne sont pas appropriées pour le raccordement d'un capteur esclave.

Vous trouverez de plus amples informations au chapitre "Combinaison maître - esclave" de la présente notice de mise en service.

Pression du système de mesure

La cellule de mesure avec sa membrane en céramique robuste constitue l'élément de mesure. La pression process fait déplacer la membrane et entraîne une variation de capacité dans la cellule. Celleci est convertie en un signal électrique et émise par le signal de sortie comme valeur de mesure.

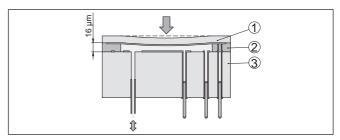


Fig. 3: Structure de la cellule de mesure en céramique

- 1 Membrane process
- 2 Cordon de verre
- 3 Corps de base

Température du système de mesure

Une sonde de température dans la membrane en céramique de la cellule de mesure ø 28 mm, ou sur le corps de base en céramique de la cellule de mesure ø 17,5 mm détecte la température process actuelle. La valeur de température est éditée via le capteur maître.

Même les sauts extrêmes de température process sont immédiatement détectés par la cellule de mesure CERTEC® Ø 28 mm. Les valeurs sont comparées à celles d'une autre mesure de température sur le corps de base en céramique. En seulement quelques cycles de mesure, l'électronique intelligente du capteur compense les écarts de mesure autrement inévitables causés par les chocs de température dans la plage. Suivant l'atténuation réglée, ceux-ci entraînent uniquement des modifications légères et de courte durée du signal de sortie.¹)

Types de pression

Pression relative: La cellule de mesure est ouverte vers l'atmosphère. La pression ambiante est mesurée dans la cellule de mesure et compensée. Elle n'a donc aucune influence sur la valeur de mesure.

Pression absolue : La cellule est mise sous vide et isolée de l'atmosphère. La pression ambiante n'est pas compensée et a donc une influence sur la valeur de mesure.

Conceptions de joints d'étanchéité

Les représentations suivantes montrent des exemples d'installation de la cellule de mesure céramique dans le raccord process et les différents concepts de joints d'étanchéité.

Installation encastrée

Le montage en retrait est particulièrement approprié pour les applications avec des gaz, des vapeurs et des liquides propres. Le joint de la cellule de mesure sont montés sur le coté et sur l'avant.

Dans le cas des températures supérieures à 100 °C, la fonction est automatiquement désactivée pour être automatiquement réactivée à des températures inférieures à 95 °C.

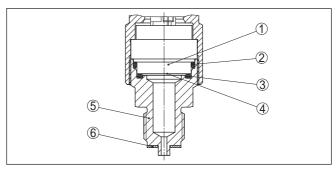


Fig. 4: Montage en retrait de la cellule de mesure (exemple : raccordement du manomètre G½)

- 1 Cellule de mesure
- 2 Joint pour cellule de mesure
- 3 Joint avant supplémentaire pour cellule de mesure
- 4 Membrane
- 5 Raccord process
- 6 Joint pour raccord process

Installation arasante avec joint simple

Le montage arasant est particulièrement approprié pour les applications avec des produits visqueux ou abrasfis et en cas de colmatages. Le joint de la cellule de mesure se trouve alors sur le côté.

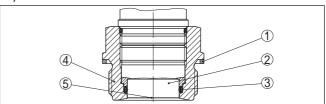


Fig. 5: Montage arasant de la cellule de mesure (exemple : filetage G1½)

- 1 Joint pour raccord process
- 2 Cellule de mesure
- 3 Joint pour cellule de mesure
- 4 Raccord process
- 5 Membrane

Installation absolument arasante avec joint simple

L'installation absolument arasante est particulièrement appropriée pour les applications dans l'industrie papetière. La membrane se trouve dans le flux de produit, est ainsi nettoyée et de ce fait protégée contre les colmatages.

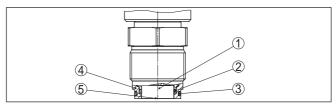


Fig. 6: Montage arasant de la cellule de mesure (exemple : M30 x 1,5)

- 1 Cellule de mesure
- 2 Joint pour cellule de mesure
- 3 Joint pour raccord process
- 4 Raccord process
- 5 Membrane

Installation arasante avec joint double

Le montage arasant est particulièrement approprié pour les applications avec des produits visqueux. Le joint supplémentaire se trouvant devant protège le cordon de verre de la cellule de mesure des agressions chimiques et l'électronique de la cellule de mesure de la diffusion de gaz agressifs issus du process.

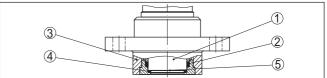


Fig. 7: Montage arasant de la cellule de mesure avec joint double (exemple : raccord de bride avec tube)

- 1 Cellule de mesure
- 2 Joint pour cellule de mesure
- 3 Raccord process
- 4 Joint avant supplémentaire pour cellule de mesure
- 5 Membrane

Installation dans raccord hygiénique

Le montage arasant, hygiénique de la cellule de mesure est particulièrement approprié pour les applications alimentaires. Les joints sont montés sans fente. Le joint profilé pour la cellule de mesure protège simultanément le cordon de verre.

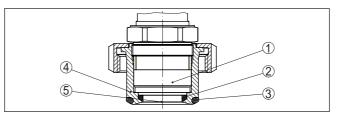


Fig. 8: Montage hygiénique de la cellule de mesure (exemple : raccordement aseptique avec écrou flottant à encoche)

- 1 Cellule de mesure
- 2 Joint profilé pour cellule de mesure
- 3 Joint sans fente pour raccord process
- 4 Raccord process
- 5 Membrane

Installation dans un raccord hygiénique selon 3-A

Le montage arasant hygiénique de la cellule mesure selon 3A est particulièrement approprié pour les applications alimentaires. Les joints sont montés sans fente. Le joint supplémentaire à l'avant pour la cellule de mesure protège simultanément le cordon de verre. Un alésage dans le raccord process a pour fonction la détection de fuite.

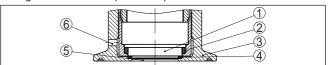


Fig. 9: Montage hygiénique de la cellule de mesure selon 3-A (exemple : raccord de clamp)

- 1 Cellule de mesure
- 2 Joint pour cellule de mesure
- 3 Raccord process
- 4 Joint avant supplémentaire pour cellule de mesure
- 5 Membrane
- 5 Percage pour la reconnaissance de fuites

3.3 Procédures de nettoyage supplémentaires

Le CPT-2x est également disponible dans la version "sans huile, sans graisse et sans silicone". Ces appareils ont subi un procédé de nettoyage spécial pour la suppression d'huiles, de graisses et d'autres substances pouvant nuire à la dispersion des laques (LABS).

Le nettoyage est réalisé sur tous les composants touchant le process ainsi que sur les surfaces accessibles de l'extérieur. Après le processus de nettoyage, l'appareil est immédiatement emballé dans une feuille en matière plastique afin de maintenir le degré de pureté. Ce dernier est maintenu tant que l'appareil se trouve dans son emballage d'origine.

Avertissement!

Le CPT-2x dans cette version ne doit pas être utilisé dans des applications à oxygène. Des appareils sont disponibles dans une version spéciale "Sans huile, sans graisse et sans silicone pour l'application à oxygène" à cet effet.

3.4 Emballage, transport et stockage

Emballage

Durant le transport jusqu'à son lieu d'application, votre appareil a été protégé par un emballage dont la résistance aux contraintes de transport usuelles a fait l'objet d'un test selon la norme DIN ISO 4180.

L'emballage de l'appareil est en carton non polluant et recyclable. Pour les versions spéciales, on utilise en plus de la mousse ou des feuilles de polyéthylène. Faites en sorte que cet emballage soit recyclé par une entreprise spécialisée de récupération et de recyclage.

Transport

Le transport doit s'effectuer en tenant compte des indications faites sur l'emballage de transport. Le non-respect peut entraîner des dommages à l'appareil.

Inspection du transport

Dès la réception, vérifiez si la livraison est complète et recherchez d'éventuels dommages dus au transport. Les dommages de transport constatés ou les vices cachés sont à traiter en conséquence.

Stockage

Les colis sont à conserver fermés jusqu'au montage en veillant à respecter les marquages de positionnement et de stockage apposés à l'extérieur.

Sauf autre indication, entreposez les colis en respectant les conditions suivantes :

- Ne pas entreposer à l'extérieur
- Entreposer dans un lieu sec et sans poussière
- Ne pas exposer à des produits agressifs
- Protéger contre les rayons du soleil
- Éviter des secousses mécaniques

Température de stockage et de transport

- Température de transport et de stockage voir au chapitre "Annexe
 - Caractéristiques techniques Conditions ambiantes"
- Humidité relative de l'air 20 ... 85 %

Soulever et porter

Avec un poids des appareils supérieur à 18 kg (39.68 lbs), il convient d'utiliser des dispositifs appropriés et homologués pour soulever et porter.

4 Montage

4.1 Remarques générales

Conditions de process

Remarque:

Pour des raisons de sécurité, il est uniquement autorisé d'exploiter l'appareil dans les conditions process admissibles. Vous trouverez les indications à cet égard au chapitre "Caractéristiques techniques" de la notice de mise en service ou sur la plaque signalétique.

Assurez vous avant le montage que toutes les parties de l'appareil exposées au process sont appropriées aux conditions de celui-ci.

Celles-ci sont principalement:

- La partie qui prend les mesures
- Raccord process
- Joint process

Les conditions du process sont en particulier :

- Pression process
- Température process
- Propriétés chimiques des produits
- Abrasion et influences mécaniques

Protection contre l'humidité

Protégez votre appareil au moyen des mesures suivantes contre l'infiltration d'humidité :

- Utilisez un câble de raccordement approprié (voir le chapitre "Raccorder à l'alimentation tension")
- Serrez bien le presse-étoupe ou le connecteur
- Passez le câble de raccordement vers le bas devant le presseétoupe ou le connecteur

Cela est avant tout valable en cas de montage en extérieur, dans des locaux dans lesquels il faut s'attendre à de l'humidité (par ex. du fait des cycles de nettoyage) et aux réservoirs refroidis ou chauffés.

Remarque:

Assurez-vous que le degré de pollution indiqué dans les "Caractéristiques techniques" est adapté aux conditions ambiantes présentes.

Remarque:

Assurez-vous que pendant l'installation ou la maintenance, aucune humidité ou aucune salissure ne peut pénétrer à l'intérieur de l'appareil.

Pour maintenir le type de protection d'appareil, assurez que le couvercle du boîtier est fermé pendant le fonctionnement et le cas échéant fixé.

Vissage

Les appareils avec raccord fileté sont vissés avec une clé à vis adaptée au moyen de l'hexagone sur le raccord process.

Taille de clé voir chapitre "Dimensions".

Attention!

Le boîtier et le raccord électrique ne doivent pas être utilisés pour le vissage! Le serrage peut engendrer des dommages, par ex. sur la mécanique de rotation du boîtier en fonction de la version de l'appareil.

Vibrations

En cas de fortes vibrations à l'emplacement de mise en œuvre, il est recommandé d'utiliser la version d'appareil avec électronique externe. Voir chapitre "Boîtier externe".

Pression process admissible (MWP) - Appareil

La plage de pression process autorisée est indiquée sur la plaque signalétique avec "MWP" (Maximum Working Pressure), se reporter au chapitre "*Structure*". La MWP tient compte de l'élément le moins résistant à la pression de la combinaison cellule de pression et raccord process ; elle peut être appliquée en permanence. L'indication se fonde sur une température de référence de +20 °C (+68 °F). Elle s'applique également aux appareils commandés avec une cellule de mesure de plage supérieure à celle du raccord.

Pour que l'appareil n'en soit pas endommagé, une pression de contrôle ne peut dépasser la MWP indiquée de 50% à la température de référence que brièvement. Il convient dans ce cadre de tenir compte des niveaux de pression du raccord process ainsi que de la surpression admissible par la cellule de mesure se reporter au chapitre "Caractéristiques techniques").

De plus, un derating de température du raccord process, par ex. pour les brides, peut limiter la plage de pression process autorisée de la norme respective.

Pression process admissible (MWP) - Accessoires de montage

La plage de pression process admissible est indiquée sur la plaque signalétique. L'appareil doit uniquement être exploité avec ces pressions lorsque les accessoires de montage utilisés satisfont également ces valeurs. Veillez-y en utilisant des brides, des raccords à souder, des bagues de serrages avec des raccords Clamp, des joints etc.

Limites de température

De plus hautes températures process signifient souvent aussi de plus hautes températures ambiantes. Assurez-vous que les limites supérieures de température indiquées au chapitre "Caractéristiques techniques" ne soient pas dépassées dans la zone du boîtier de l'électronique et du câble de raccordement.

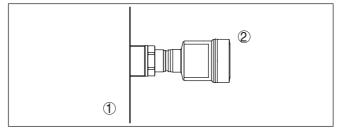


Fig. 10: Plages de température

- 1 Température process
- 2 Température ambiante

4.2 Informations concernant les applications à oxygène

Applications à oxygène

L'oxygène et d'autres gaz peuvent exploser en présence de graisses, lubrifiants et matières synthétiques, si bien qu'il convient de prendre les mesures préventives suivantes :

- Tous les composants de l'installation comme par ex. les instruments de mesure doivent être nettoyés conformément aux exigences des normes ou standards reconnus
- Selon le matériau du joint, certaines températures et pressions maximales ne doivent pas être dépassées dans les applications à oxygène, voir chapitre "Caractéristiques techniques"

Danger!

La feuille PE recouvrant les appareils destinés à une application à oxygène ne doit être enlevée que juste avant le montage. Après avoir retiré la protection du raccord process, vous pourrez voir distinctement le marquage "O₂" sur le raccord. Évitez absolument toute application d'huile, de graisse et de crasse. Danger d'explosion!

4.3 Ventilation et compensation de pression

Filtre - Fonction

Le filtre dans le boîtier de l'électronique a les fonctions suivantes :

- Aération boîtier de l'électronique
- Compensation de la pression atmosphérique (en cas de plages de mesure de pression relative)

Avertissement!

L'élément de filtre entraîne une compensation de pression retardée. La valeur de mesure peut se modifier pendant env. 5 s et jusqu'à 15 mbars lors de l'ouverture ou de la fermeture rapide du couvercle du boîtier.

Pour une ventilation efficace, le filtre doit toujours être dénué de dépôts. C'est pourquoi en cas de montage horizontal, tournez le boîtier de manière que le filtre soit dirigé vers le bas. Il est ainsi mieux protégé contre les dépôts.

Avertissement!

Pour le nettoyage, n'utilisez pas de nettoyeur haute pression. L'élément filtre pourrait être endommagé et et l'humidité peut pénétrer dans le boîtier.

La disposition de l'élément filtre pour les différentes versions d'appareils est décrite dans les paragraphes suivants.

Filtre - Position

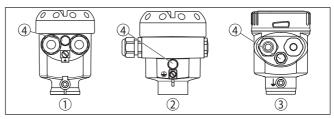


Fig. 11: Position de l'élément filtre - version non-Ex et Ex-ia

- 1 Boîtier plastique, acier inoxydable (moulage cire perdue)
- 2 Boîtier en aluminium
- 3 Boîtier en acier inoxydable (électropoli)
- 4 Élément filtre

Les appareils suivants sont équipés d'un obturateur au lieu d'un élément filtre :

- Appareils en protection IP66/IP68 (1 bar) aération via capillaires dans le câble raccordé à demeure
- Appareils avec plage de pression absolue

Filtre - Position version Ex

→ Tournez l'anneau métallique de sorte que l'élément filtre pointe vers le bas après l'installation de l'appareil. Il est ainsi mieux protégé contre tout dépôt.

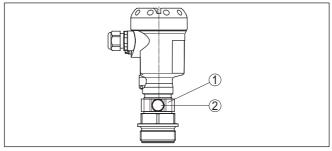


Fig. 12: Position de l'élément filtre - version Ex-d

- 1 Anneau métallique tournant
- 2 Élément filtre

Les appareils avec pression absolue sont équipés d'un obturateur au lieu d'un élément filtre.

Appareils avec Second Line of Defense

Pour les appareils avec Second Line of Defense (passage étanche au gaz), les composants de raccordement au process sont entièrement encapsulés. Une cellule de pression absolue est utilisée de sorte qu'une aération ne soit pas nécessaire.

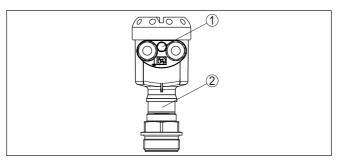


Fig. 13: Position de l'élément filtre - passage étanche au gaz

1 Élément filtre

Filtre - Position version IP69K

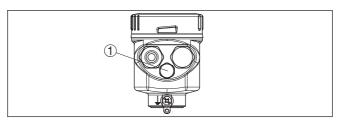


Fig. 14: Position de l'élément filtre - version IP69K

1 Élément filtre

Les appareils avec pression absolue sont équipés d'un obturateur au lieu d'un élément filtre.

4.4 Combinaison maître - esclave

Fondamentalement, toutes les combinaisons de capteurs à l'intérieur de la série d'appareils sont autorisées. Les conditions suivantes doivent être remplies :

- Configuration capteur maître appropriée à la pression différentielle électronique
- Type de pression identique pour les deux capteurs, c.-à-d. pression relative/pression relative ou pression absolue/pression absolue
- Le capteur maître mesure la pression élevée
- Disposition de mesure conformément à la représentation dans les chapitres suivants

La plage de mesure de chaque capteur est sélectionnée de telle manière qu'elle soit adaptée au point de mesure. Il faut dans ce contexte prendre en compte le Turn Down maximum recommandé. Consulter le chapitre "Caractéristiques techniques". Les plages de mesure du maître et de l'esclave doivent impérativement correspondre.

Résultat de la mesure = Valeur de mesure du maître (pression totale) - valeur de mesure de l'esclave (pression statique)

Des combinaisons individuelles peuvent résulter en fonction de la tâche de mesure. Voir les exemples suivants :

Exempe - grand réservoir Données

Application : mesure de niveau

Produit: eau

Hauteur du réservoir : 12 m, pression hydrostatique = 12 m x 1000 kg/

 $m^3 \times 9.81 \text{ m/s}^2 = 117.7 \text{ kPa} = 1.18 \text{ bar}$

Pression superposée : 1 bar

Pression totale: 1,18 bar + 1 bar = 2,18 bar

Sélection des appareils

Plage de mesure nominale maître : 2,5 bar Plage de mesure nominale esclave : 1 bar Turn Down : 2,5 bar/1,18 bar = 2,1 : 1

Exemple - petit réservoir

Données

Application: mesure de niveau

Produit: eau

Hauteur du réservoir : 500 mm, pression hydrostatique = 0,50 m x

 $1000 \text{ kg/m}^3 \text{ x } 9.81 \text{ m/s}^2 = 4.9 \text{ kPa} = 0.049 \text{ bar}$ Pression superposée : 350 mbar = 0.35 barPression totale : 0.049 bar + 0.35 bar = 0.399 bar

Sélection des appareils

Plage de mesure nominale maître : 0,4 bar Plage de mesure nominale esclave : 0,4 bar Turn Down : 0,4 bar /0,049 bar = 8,2 : 1

Exemple - Diaphragme de mesure dans la tuvauterie

Données

Application : mesure de la pression différentielle

Produit :gaz

Pression statique: 0,8 bar

Pression différentielle sur le diaphragme de mesure : 50 mbar =

0.050 bar

Pression totale: 0.8 bar + 0.05 bar = 0.85 bar

Sélection des appareils

Plage de mesure nominale maître : 1 bar Plage de mesure nominale esclave : 1 bar Turn Down : 1 bar/0,050 bar = 20 : 1

Édition des valeurs mesurées

Le résultat de la mesure (niveau de remplissage, différence de pression) ainsi que la valeur mesurée esclave (pression statique ou superposée) sont édités par le capteur. La sortie est effectuée suivant la version de l'appareil comme signal 4 ... 20 mA ou numériquement via HART. Profibus PA ou Foundation Fieldbus.

4.5 Mesure de niveau

Mise en œuvre

La combinaison maître-esclave est appropriée à la mesure de niveau dans un réservoir sous pression

Observez les informations suivantes concernant la mise en œuvre :

- Installer le capteur maître au-dessous du niveau min.
- Monter le capteur maître à une certaine distance du flot de remplissage et de la vidange
- Monter le capteur maître de manière à le protéger de tout choc de pression d'un agitateur
- Installer le capteur esclave au-dessus du niveau max.

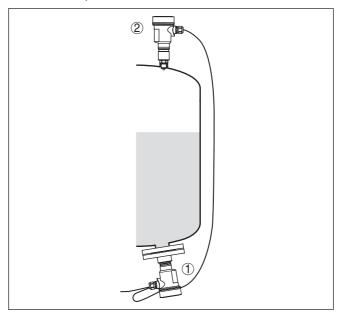


Fig. 15: Disposition des éléments pour mesure de niveau dans un réservoir sous pression

- 1 CPT-2x
- 2 CPT-2x, capteur esclave

4.6 Mesure de pression différentielle

Mise en œuvre

La combinaison maître-esclave est appropriée à la mesure de pression différentielle

Dans les gaz, par exemple, il faut observer les remarques suivantes concernant la disposition de mesure :

• Installez les appareils au-dessus du point de mesure

La condensation peut s'écouler dans la conduite de process.

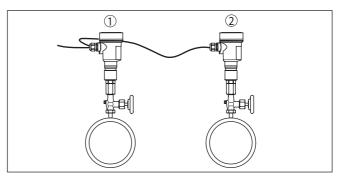


Fig. 16: Disposition de mesure pour la mesure de pression différentielle de gaz dans des conduites

- 1 CPT-2x
- 2 CPT-2x, capteur esclave

4.7 Mesure d'interface

Mise en œuvre

La combinaison maître-esclave est appropriée à la mesure d'interface Conditions préalables pour un bon fonctionnement de la mesure :

- Réservoir avec niveau modifiable
- Produits à densité constante
- Couche d'interface toujours située entre les points de mesure
- Niveau total toujours au-dessus du point de mesure supérieur

La distance de montage h des deux capteurs doit être au minimum de 10 %, mais idéalement de 20 % de la valeur final de la plage de mesure du capteur. Un écart supérieur augmente la précision de la mesure de la couche de séparation.

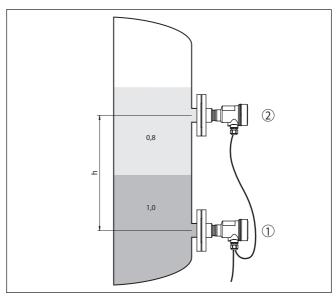


Fig. 17: Disposition de mesure pour mesure d'interface, h = distance entre les deux points de mesure

- 1 CPT-2x
- 2 CPT-2x, capteur esclave

La mesure d'interface est possible aussi bien qu'avec réservoirs ouverts que fermés.

4.8 Mesure de densité

Mise en œuvre

La combinaison maître-esclave est appropriée à la mesure de densité.

Conditions préalables pour un bon fonctionnement de la mesure :

- Réservoir avec niveau modifiable
- Points de mesure aussi espacés que possible les uns des autres
- Niveau toujours au-dessus du point de mesure supérieur

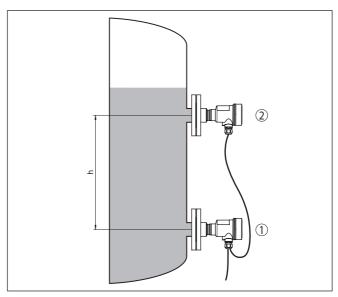


Fig. 18: Disposition de mesure pour mesure de densité, h = distance entre les deux points de mesure

- 1 CPT-2x
- 2 CPT-2x, capteur esclave

La distance de montage h des deux capteurs doit être au minimum de 10 %, mais idéalement de 20 % de la valeur final de la plage de mesure du capteur. Un écart supérieur augmente la précision de la mesure de densité.

De petites modifications de densité ne provoquent également que de petites modifications de la pression différentielle. La plage de mesure doit donc être sélectionnée de manière appropriée.

La mesure de densité est possible aussi bien avec réservoirs ouverts que fermés.

4.9 Mesure de niveau à compensation de densité

La combinaison maître-esclave est appropriée pour la mesure de niveau à compensation de densité

Observez les informations suivantes concernant la mise en œuvre :

- Installer le capteur maître au-dessous du niveau min.
- Monter le capteur esclave au-dessus du capteur maître
- Monter les deux capteurs éloignés du courant de remplissage et de la vidange et protégés contre les chocs de pression d'un agitateur

Mise en œuvre

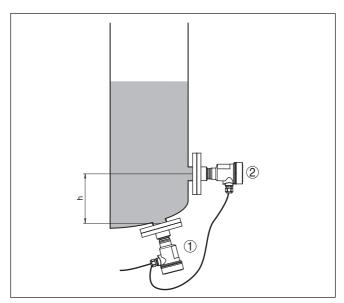


Fig. 19: Disposition de mesure dans le cas de la mesure de niveau à compensation de densité, h = distance entre les deux points de mesure

- 1 CPT-2x
- 2 CPT-2x, capteur esclave

La distance de montage h des deux capteurs doit être au minimum de 10 %, mais idéalement de 20 % de la valeur final de la plage de mesure du capteur. Un écart supérieur augmente la précision de la compensation de densité.

La mesure de niveau à compensation de densité démarre avec la densité enregistrée de 1 kg/dm³. Dès que les deux capteurs sont obturés, cette valeur est remplacée par la densité calculée. Compensation de densité signifie que la valeur de niveau en unités de hauteur et les valeurs d'ajustement ne changent pas lorsque la densité varie.

La mesure de niveau à compensation de densité est possible uniquement avec des réservoir ouverts, en d'autres mots hors pression.

Structure

4.10 Boîtier externe

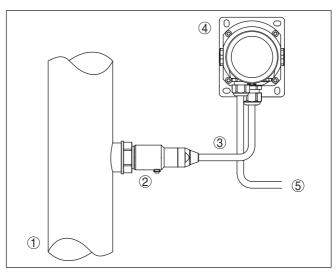


Fig. 20: Disposition composants de raccordement au process, boîtier externe

- 1 Tuyauterie
- 2 Composants de raccordement au process
- 3 Ligne de liaison composants de raccordement au process boîtier externe
- 4 Boîtier externe
- 5 Ligne signal

5 Raccordement à l'alimentation en tension

5.1 Préparation du raccordement

Consignes de sécurité

Respectez toujours les consignes de sécurité suivantes :

- Le raccordement électrique est strictement réservé à un personnel qualifié, spécialisé et autorisé par l'exploitant de l'installation.
- En cas de risque de surtensions, installer des appareils de protection contre les surtensions

Attention!

Ne raccordez ou débranchez que lorsque la tension est coupée.

Tension d'alimentation

L'alimentation en tension et la transmission des signaux se font via le câble de raccordement blindé à quatre fils du capteur maître.

Vous trouverez les données pour ce circuit signal dans le chapitre " Caractéristiques techniques ".

Câble de raccordement

L'appareil est raccordé au moyen du câble blindé à quatre fils fourni. Ce câble est absolument nécessaire pour une fonction sûre de la mesure électronique de pression différentielle.

Utilisez un presse-étoupe adapté pour le diamètre du câble afin d'assurer l'efficacité de l'étanchéité du presse-étoupe (protection IP).

Blindage électrique du câble et mise à la terre

Le blindage du câble entre le capteur maître et le capteur esclave doit être mis à la terre des deux côtés. Pour ce faire, le blindage dans le capteur est directement raccordé à la borne de mise à la terre. La borne de mise à la terre extérieur sur le boîtier doit être connectée à la terre avec une faible impédance.

Presse-étoupes

Filetage métrique

Dans le cas de boîtiers d'appareil avec filetages métriques, les presse-étoupes sont vissés en usine. Ils sont bouchés à titre de protection de transport par des obturateurs en plastique.

Remarque:

Ces obturateurs doivent être retirés avant de procéder au branchement électrique.

Filetage NPT

Les presse-étoupes ne peuvent pas être vissés en usine pour les boîtiers d'appareil avec filetages NPT autoétanchéifiants. Les ouvertures libres des entrées de câble sont pour cette raison fermées avec des capots rouges de protection contre la poussière servant de protection pendant le transport.

Remarque:

Vous devez remplacer ces capots de protection par des presseétoupes agréés avant la mise en service ou les fermer avec des obturateurs appropriés.

Dans le cas du boîtier en plastique, visser le presse-étoupe NPT ou le conduit en acier non enduit de graisse dans la douille taraudée.

Couple de serrage maximal pour tous les boîtiers : voir au chapitre "Caractéristiques techniques".

5.2 Raccordement

Technique de raccordement

Le raccordement au capteur maître est effectué au moyen de deux bornes auto-serrantes dans le boîtier respectif. Utiliser pour ce faire le câble confectionné fourni. Les conducteurs rigides ainsi que les conducteurs flexibles avec embouts sont enfichés directement dans les orifices des bornes.

Pour les conducteurs souples sans embout, presser avec un petit tournevis sur la partie supérieure de la borne ; l'ouverture est alors libérée. Lorsque vous enlevez le tournevis, la borne se referme.

•

Information:

Le bornier est enfichable et peut être enlevé de l'électronique. Pour ce faire, soulevez-le avec un petit tournevis et extrayez-le. Lors de son encliquetage, un bruit doit être audible.

Pour plus d'informations sur la section max. des conducteurs, voir "Caractéristiques techniques - Caractéristiques électromécaniques".

Étapes de raccordement

Procédez comme suit :

- 1. Dévisser le couvercle du boîtier
- 2. Desserrer l'écrou flottant du presse-étoupe et sortir l'obturateur
- Enlevez la gaine du câble de raccordement sur env. 10 cm (4 in), dénudez l'extrémité des conducteurs sur env. 1 cm (0.4 in) ou utilisez le câble de liaison livré
- 4. Introduire le câble dans le capteur en le passant par le presseétoupe.

Fig. 21: Étapes de raccordement 5 et 6

 Enficher les extrémités des conducteurs dans les bornes suivant le schéma de raccordement

- Vérifier la bonne fixation des conducteurs dans les bornes en tirant légèrement dessus
- 7. Raccorder le blindage à la borne de terre interne et relier la borne de terre externe à la liaison équipotentielle
- 8. Bien serrer l'écrou flottant du presse-étoupe. L'anneau d'étanchéité doit entourer complètement le câble
- 9. Dévisser l'obturateur du maître, visser le presse-étoupe livré
- 10. Raccorder les câbles au maître, voir à cet effet les étapes 3 à 8
- 11. Revisser le couvercle du boîtier

Le raccordement électrique est terminé.

5.3 Boîtier à chambre unique

Le schéma suivant est valable pour les versions non-Ex, Ex-ia et Ex-d-ia.

Compartiment électronique et de raccordement

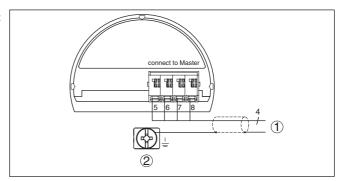


Fig. 22: Schéma de raccordement CPT-2x capteur esclave

- 1 Vers le capteur maître
- 2 Borne de terre pour le raccordement du blindage du câble²⁾

²⁾ Le blindage est à raccorder ici. La borne de terre à l'extérieur du boîtier doit être mise à la terre selon les règles d'installation électrique. Les deux bornes sont reliées galvaniquement.

Aperçu

5.4 Boîtier externe pour version IP68 (25 bars)

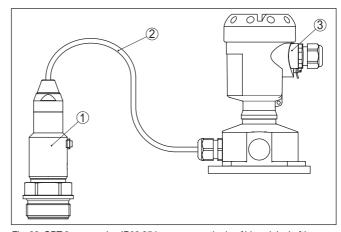


Fig. 23: CPT-2x en version IP68 25 bars avec sortie de câble axiale, boîtier externe

- 1 Capteur de mesure
- 2 Câble de raccordement
- 3 Boîtier externe

Compartiment électronique et de raccordement pour alimentation

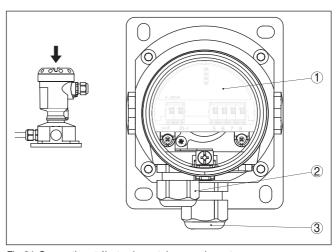


Fig. 24: Compartiment électronique et de raccordement

- 1 Électronique
- 2 Presse-étoupe pour l'alimentation en tension
- 3 Presse-étoupe pour câble de raccordement capteur de mesure

Boîte à bornes socle du boîtier

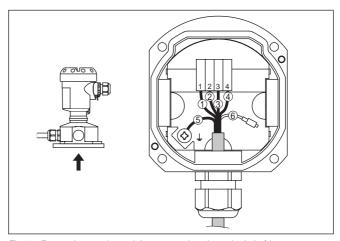


Fig. 25: Raccordement du module process dans le socle du boîtier

- 1 Jaune
- 2 Blanc(he)
- 3 Rouge
- 4 Noir(e)
- 5 Blindage
- 6 Capillaire compensateur de pression

Compartiment électronique et de raccordement

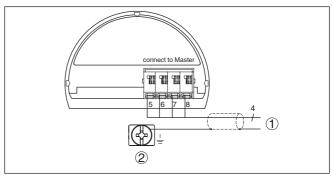


Fig. 26: Schéma de raccordement CPT-2x capteur esclave

- 1 Vers le capteur maître
- 2 Borne de terre pour le raccordement du blindage du câble³⁾

³⁾ Le blindage est à raccorder ici. La borne de terre à l'extérieur du boîtier doit être mise à la terre selon les règles d'installation électrique. Les deux bornes sont reliées galvaniquement.

Exemple de raccordement pression différentielle électronique

5.5 Exemple de raccordement

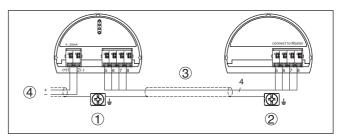


Fig. 27: Exemple de raccordement pression différentielle électronique

- 1 Capteur maître
- 2 Capteur esclave
- 3 Câble de raccordement
- 4 Circuit d'alimentation et signal capteur maître

La connexion entre le capteur maître et le capteur esclave est effectuée selon le tableau suivant :

Capteur maître	Capteur esclave
Borne 5	Borne 5
Borne 6	Borne 6
Borne 7	Borne 7
Borne 8	Borne 8

6 Mise en service avec le module de réglage et d'affichage

6.1 Paramétrage - Paramétrage étendu

Pour les voies de mesure qui requièrent des applications techniquement exigeantes, vous pouvez effectuer des réglages plus détaillés dans le "Réglage étendu".

Menu principal

Le menu principal est subdivisé en cinq domaines ayant les fonctionnalités suivantes :

Mise en service: Réglages relatifs, par ex., au nom de la voie de mesure, à l'application, aux unités, à la correction de position, au réglage, à la sortie signal

Affichage : réglages par ex. pour la langue, l'affichage de valeur mesurée, l'éclairage

Diagnostic : Informations relatives, par ex., à l'état de l'appareil, aux index suiveurs, à la fiabilité de la mesure, à la simulation

Autres réglages : Code PIN, date/heure, Reset, fonction de copie

Info : Nom de l'appareil, version du matériel et du logiciel, date de l'étalonnage, caractéristiques du capteur

Au menu principal " *Mise en service* ", il est nécessaire pour obtenir un réglage optimal de la mesure de sélectionner les sous-menus l'un après l'autre et de leur attribuer les paramètres corrects.

Les points de sous-menu suivants sont disponibles :

Les paragraphes suivants contiennent une description détaillée des points de menu du menu " *Mise en service* " pour la mesure de pression différentielle électronique. Différents paragraphes sont importants en fonction de votre application sélectionnée.

i

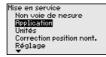
Information:

Les autres points de menu du menu " *Mise en service* " et les menus complets " *Affichage* ", " *Diagnostic* ", " *Autres réglages* " et " *Info* " sont décrits dans le manuel de mise en service du capteur maître correspondant.

Application

6.1.1 Mise en service

Ce point de menu vous permet d'activer/de désactiver le capteur esclave pour la pression différentielle électronique et de sélectionner l'application.

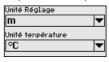

En combinaison avec un capteur esclave, le CPT-2x peut être utilisé pour la mesure de débit, de pression différentielle, de densité et d'interface. La mesure de pression différentielle est le réglage d'usine. Vous pouvez le changer dans ce menu de réglage.

Si vous avez raccordé un capteur esclave, validez avec "Activer".

•

Remarque:

Pour afficher les applications pour la mesure de pression différentielle électronique, il est absolument nécessaire d'activer le capteur esclave.


Saisissez les paramètres désirés avec les touches respectives, sauvegardez vos saisies avec [OK] puis passez au point de menu suivant avec [ESC] et [->].

Unités

Dans ce point de menu, vous définissez les unités pour le " Réglage min./zéro " et le " Réglage max./span " ainsi que la pression statique.

Si le niveau doit être réglé sur une unité de hauteur, il faudra saisir en plus la densité du produit lors du réglage.

De plus, on définit l'unité dans le point de menu " *Index suiveur tem*pérature ".

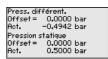
Saisissez les paramètres désirés avec les touches respectives, sauvegardez vos saisies avec [OK] puis passez au point de menu suivant avec [ESC] et [->].

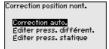
Correction de position

Le position de montage de l'appareil peut décaler (offset) la valeur de mesure en particulier des systèmes séparateurs. La correction de position permet de compenser cet offset. La valeur de mesure actuelle est transférée automatiquement. Pour les cellules de mesure de pression relative, un offset manuel peut être effectué en supplément.

Les possibilités suivantes existent pour la correction de position avec une combinaison maître/esclave

Correction automatique pour les deux capteurs


- Correction manuelle pour le maître (pression différentielle)
- Correction manuelle pour l'esclave (pression statique)


Dans le cas d'une combinaison maître/esclave avec l'application "mesure de niveau à compensation de densité", les possibilités suivantes existent en plus pour la correction de position

- Correction automatique maître (niveau)
- Correction manuelle pour le maître (niveau)



Lors d'une correction de position automatique, la valeur de mesure actuelle est transférée comme valeur de correction. celle-ci ne doit dans ce cadre pas être faussée par l'immersion du produit ou une pression statique.

Lors d'une correction de position manuelle, la valeur offset est déterminée par l'opérateur. Pour ce faire, sélectionnez la fonction "Éditer" et saisissez la valeur souhaitée.

Enregistrez vos saisies avec [OK] et avancez au prochain point de menu avec [ESC] et [->].

Après avoir terminé la correction de position, la valeur de mesure actuelle doit être corrigée et réglée sur 0. La valeur de correction est affichée comme valeur offset avec signe inverse.

La correction de position peut être renouvelée aussi souvent que souhaité.

Réglage

Le CPT-2x mesure toujours une pression indépendamment de la grandeur de process sélectionnée dans le point de menu "Application". Pour afficher correctement la grandeur de process sélectionnée, une attribution à 0 % et 100 % du signal sortie doit être effectuée (réglage).

Pour l'application " *Niveau* ", le réglage se fait en saisissant la pression hydrostatique, par ex. pour le réservoir plein et vide. Une pression accumulée est mesurée et compensée automatiquement par le capteur esclave. Voir l'exemple suivant :

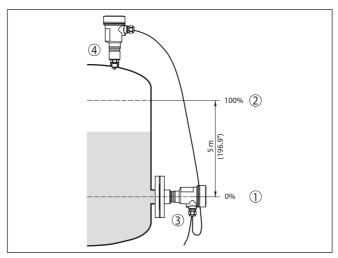


Fig. 28: Exemple de paramétrage réglage min./max. mesure de niveau

- 1 Niveau min. = 0 % correspond à 0,0 mbar
- 2 Niveau max. = 100 % correspondent à 490,5 mbars
- 3 CPT-2x
- 4 CPT-2x, capteur esclave

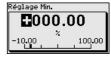
Si ces valeurs ne sont pas connues, le réglage peut également être effectué pour les niveaux de 10 % et 90 % par exemple. La hauteur de remplissage est ensuite calculée à l'aide de ces valeurs.

Pour ce réglage, le niveau actuel ne joue aucun rôle. Le réglage min./ max. sera toujours réalisé sans variation de niveau du produit. Ainsi, ces réglages peuvent être effectués à l'avance, sans avoir auparavant à installer le capteur.

Remarque:

Si les plages de réglage sont dépassées, la valeur saisie ne sera transférée. Il est possible d'interrompre l'édition avec *[ESC]* ou de corriger la valeur sur une valeur se trouvant à l'intérieur des plages de réglage.

Pour les autres grandeurs de process, comme la pression process, la pression différentielle ou le débit, le réglage est effectué conformément.


Réglage min. niveau

Procédez comme suit :

 Sélectionner le point de menu "Mise en service" avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu "Réglage", ensuite "Réglage min." et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la valeur pourcent souhaitée avec [+] (par ex. 10 %) et enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de pression.
- Saisir la valeur de pression correspondante pour le niveau min. (par ex. 0 mbar).
- Sauvegarder les réglages avec [OK] et aller avec [ESC] et [->] au réglage maxi.

Le réglage min. est maintenant terminé.

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Réglage max. Niveau

Procédez comme suit :

Sélectionner le point de menu Réglage maxi. avec [->] et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la valeur pourcent souhaitée avec [+] (par ex. 90 %) et enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de pression.
- 4. Saisir la valeur de pression appropriée au pourcentage pour le réservoir plein (par ex. 900 mbars).
- 5. Sauvegarder les réglages avec [OK]

Le réglage max. est maintenant terminé.

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Réglage min. du débit

Procédez comme suit :

 Sélectionner le point de menu "Mise en service" avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu "Réglage min." et confirmer avec [OK].

- Passer à l'édition de la valeur mbar avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la valeur mbar souhaitée avec [+] et sauvegarder avec [OK1.
- 4. Passer au réglage span avec [ESC] et [->]

En cas de débit dans les deux directions (bidirectionnel), une pression négative est aussi possible. Avec l'ajustement Min., il faut

alors saisir la pression négative maximale. Il faut alors sélectionner en conséquence "bidirectionnel" ou "bidirectionnel-proportionnel au débit", se reporter à l'option de menu "Linéarisation".

Le réglage min. est maintenant terminé.

Pour un réglage avec pression, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Réglage max. du débit

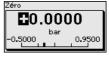
Procédez comme suit :

Sélectionner le point de menu Réglage maxi. avec [->] et confirmer avec [OK].

- Passer à l'édition de la valeur mbar avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la valeur mbar souhaitée avec [+] et sauvegarder avec [OK].

Le réglage max. est maintenant terminé.

Pour un réglage avec pression, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.


Réglage zéro de pression différentielle

Procédez comme suit :

 Sélectionner le point de menu "Mise en service" avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu "Réglage zéro" et confirmer avec [OK].

- Passer à l'édition de la valeur mbar avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la valeur mbar souhaitée avec [+] et sauvegarder avec [OK].
- 4. Passer au réglage span avec [ESC] et [->] Le réglage zéro est maintenant terminé.

- Information

Information:

Le réglage zéro décale la valeur du réglage span. L'échelle de mesure, c'est à dire la différence entre ces valeurs, restera inchangée.

Pour un réglage avec pression, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Réglage span de pression différentielle

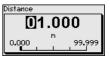
Procédez comme suit :

Sélectionner l'option de menu Réglage Span avec [->] et confirmer avec [OK].

- Passer à l'édition de la valeur mbar avec [OK] et placer le curseur avec [->] sur la position désirée.
- 3. Régler la valeur mbar souhaitée avec [+] et sauvegarder avec [OK].

Le réglage span est maintenant terminé.

Pour un réglage avec pression, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.


Écart densité

Procédez comme suit :

. Dans le point du menu "Mise en service" sélectionner avec [->] "réglage" et confirmer avec [OK]. Confirmer maintenant le point du menu "Écart" avec [OK].

- Passer à l'édition de la distance de capteur avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la distance avec [+] et sauvegarder avec [OK].

La saisie de l'écart est maintenant terminée.

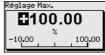
Réglage min. de densité

Procédez comme suit :

 Sélectionner le point de menu "Mise en service" avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu "Réglage min." et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler le pourcentage souhaité avec [+] et l'enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de densité.
- 4. Entrer le pourcentage correspondant à la densité minimale.
- Sauvegarder les réglages avec [OK] et aller avec [ESC] et [->] au réglage maxi.

Le réglage min. de la densité est maintenant terminé.

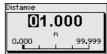

Réglage max. de densité

Procédez comme suit :

 Sélectionner le point de menu " Mise en service " avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu " Réglage max. " et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler le pourcentage souhaité avec [+] et l'enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de densité.
- 4. Entrer la densité maximale correspondant au pourcentage.

Le réglage max. de la densité est maintenant terminé.


Écart interface

Procédez comme suit :

Dans le point du menu "Mise en service" sélectionner avec [->]
 "réglage" et confirmer avec [OK]. Confirmer maintenant le point
du menu "Écart" avec [OK].

- Passer à l'édition de la distance de capteur avec [OK] et placer le curseur avec [->] sur la position désirée.
- 3. Régler la distance avec [+] et sauvegarder avec [OK].

La saisie de l'écart est maintenant terminée.

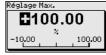
Réglage min, interface

Procédez comme suit :

 Sélectionner le point de menu "Mise en service" avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu "Réglage min." et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler le pourcentage souhaité avec [+] et l'enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de hauteur.
- Entrer la hauteur minimale de la couche d'interface correspondant au pourcentage.
- Sauvegarder les réglages avec [OK] et aller avec [ESC] et [->] au réglage maxi.

Le réglage min. de la couche d'interface est maintenant terminé.


Réglage max. interface

Procédez comme suit :

 Sélectionner le point de menu " Mise en service " avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu " Réglage max. " et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler le pourcentage souhaité avec [+] et l'enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de hauteur.
- Entrer la hauteur maximale de la couche d'interface correspondant au pourcentage.

Le réglage max. de la couche d'interface est maintenant terminé.

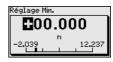
Distance niveau à compensation de densité

Procédez comme suit :

. Dans le point du menu "Mise en service" sélectionner avec [->] "réglage" et confirmer avec [OK]. Confirmer maintenant le point du menu "Écart" avec [OK].

- Passer à l'édition de la distance de capteur avec [OK] et placer le curseur avec [->] sur la position désirée.
- . Régler la distance avec [+] et sauvegarder avec [OK].

La saisie de l'écart est maintenant terminée.


Réglage min. niveau à compensation de densité

Procédez comme suit :

 Sélectionner le point de menu "Mise en service" avec [->] et confirmer avec [OK]. Sélectionner maintenant, avec [->], le point de menu "Réglage", ensuite "Réglage min." et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la valeur pourcent souhaitée avec [+] (par ex. 0 %) et enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de pression.
- 4. Saisir la valeur correspondante pour le niveau min. (par ex. 0 m).
- Sauvegarder les réglages avec [OK] et aller avec [ESC] et [->] au réglage maxi.

Le réglage min. est maintenant terminé.

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Réglage max. niveau à compensation de densité

Procédez comme suit :

Sélectionner le point de menu Réglage maxi. avec [->] et confirmer avec [OK].

- Passer à l'édition de la valeur pour cent avec [OK] et placer le curseur avec [->] sur la position désirée.
- Régler la valeur pourcent souhaitée avec [+] (par ex. 100 %) et enregistrer avec [OK]. Le curseur se positionne alors sur la valeur de pression.
- Saisir la valeur appropriée au pourcentage pour le réservoir plein (par ex. 10 m).
- 5. Sauvegarder les réglages avec [OK]

Le réglage max. est maintenant terminé.

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Une linéarisation est nécessaire pour toutes les tâches de mesure avec lesquelles la grandeur de process n'augmente pas de manière linéaire avec la valeur mesurée. Cela s'applique par exemple au débit mesuré via la pression différentielle ou au volume de la cuve au-dessus du niveau. Pour ces cas, des courbes de linéarisation correspondantes sont enregistrées. Elles indiquent le rapport entre la valeur mesurée en pourcentage et la grandeur process. La linéarisation s'applique à l'affichage de valeur mesurée et à la sortie courant.

Pour la mesure de débit et la sélection "linéaire", l'affichage et la sortie (valeur en pourcentage/courant) sont linéaires par rapport à la "pression différentielle".

Pour la mesure du débit et la sélection "*Proportionnel au débit*", l'afifchage et la sortie (valeur en pourcentage/courant) sont linéaires par rapport au "**Débit**".⁴⁾

En cas de débit dans les deux directions (bidirectionnel), une pression différentielle négative est aussi possible. Cela doit déjà être pris en compte dans l'option de menu "Ajustement min. débit".

Avertissement!

Si vous utilisez le capteur respectif comme partie d'une sécurité antidébordement selon WHG, respectez ce qui suit :

Si une courbe de linéarisation est sélectionnée, le signal de mesure n'est plus obligatoirement linéaire par rapport à la hauteur de remplis-

Linéarisation

⁴⁾ L'appareil postule une température quasiment constante et une pression statique et calcule le débit au moyen de la courbe caractéristique proportionnelle au débit à partir de la pression différentielle mesurée.

sage. L'utilisateur doit en tenir compte, en particulier lors du réglage du point de commutation sur le détecteur de niveau.

AI FB1

Comme le paramétrage du bloc de fonctions 1 (FB1) est très complet, il a été réparti dans différents sous-menus.



Al FB1 - Channel

Dans le point de menu "Channel", vous définissez le signal d'entrée à traiter dans le bloc AI FB 1.

On peut sélectionner comme signaux d'entrée les valeurs de sortie du Transducer Block (TB).

6.1.2 Afficheur

Valeur affichée 1 et 2 - 4 ... 20 mA

Dans ce point du menu, vous définissez quelle valeur de mesure doit être affichée sur l'écran.

La valeur d'affichage est réglée en usine sur " Pression différentielle ".

Format d'affichage 1 et 2

Vous définissez dans ce point du menu avec combien de chiffres après la virgule la valeur mesurée est affichée sur l'écran.

Le réglage d'usine pour le format d'affichage est "automatique".

Valeurs affichées 1 et 2 -Systèmes de bus

Dans ce point du menu, vous définissez quelle valeur de mesure doit être affichée sur l'écran.

La valeur d'affichage est réglée en usine sur " Pression différentielle ".

Format d'affichage 1 et 2

Vous définissez dans ce point du menu avec combien de chiffres après la virgule la valeur mesurée est affichée sur l'écran.

Affichage Langue du menu Valeur d'affichage 1 Valeur d'affichage 2 Fornat affichage Eclairage de fond

Le réglage d'usine pour le format d'affichage est "automatique".

6.1.3 Diagnostic

Fonction index suiveur pression

Dans le capteur, la valeur de mesure minimale et maximale respectivement pour la pression différentielle et la pression statique sont enregistrées. Les deux caleurs sont affichées dans l'option du menu "Pression fonction index suiveur".

Vous pouvez effectuer séparément une remise à zéro pour les valeurs d'index suiveur dans une autre fenêtre.

Press. différent. Mini. – 0.507 bar Maxi. – 0.507 bar Pression statique Mini. 0.00 bar Maxi. 0.50 bar

Simulation 4 ... 20 mA/ HART

Ce point de menu vous permet de simuler des valeurs de mesure. Il est ainsi possible par exemple de contrôler la voie signal via des appareils d'affichage ou la carte d'entrée du système de conduite par exemple.

Diagnostique Etat du capteur Pression index suiveur Index suiveur température Simulation Simulation

@351
Press. différent.
Pression stat.
Pour cent
Sortie courant

Simulation

Activer la

simulation?

Simulation en cours Pression **0.0000 bar**

Simulation Désactiver la simulation?

Sélectionnez la grandeur de simulation souhaitée et réglez la valeur souhaitée.

Pour désactiver une simulation, appuyer sur la touche **[ECH]** et confirmer le message "Désactiver la simulation" avec la touche **[OK]**.

Avertissement!

Pendant une simulation, la valeur simulée est délivrée comme valeur courant 4 ... 20 mA et comme signal HART numérique. La signalisation d'état dans le cadre de la fonction de gestion des actifs est "Maintenance".

Remarque:

Si la simulation n'est pas arrêtée manuellement, l'appareil coupe automatiquement après 60 min.

Simulation systèmes de bus

Ce point de menu vous permet de simuler des valeurs de mesure. Il est ainsi possible par exemple de contrôler la voie signal via des appareils d'affichage ou la carte d'entrée du système de conduite par exemple.

Diagnostique
Etat du capteur
Pression index suiveur
Index suiveur tenpérature
Sinulation

Simulation
SUI(Differenzdr.)
SU2 (Prozent)
PV (lin. Proz.)
Stat. Druck
Messzellentenp.

Simulation
Activer la
simulation?

Simulation en cours
Pression

0.0000 bar

Simulation

Désactiver la simulation?

Sélectionnez la grandeur de simulation souhaitée et réglez la valeur souhaitée.

Pour désactiver une simulation, appuyer sur la touche [ECH] et confirmer le message "Désactiver la simulation" avec la touche [OK].

Avertissement!

En cas de simulation en cours, la valeur simulée est éditée comme signal numérique. Le message d'état dans le cadre de la fonction de gestion des actifs est "*Maintenance*".

Remarque:

Si la simulation n'est pas arrêtée manuellement, l'appareil coupe automatiquement après 60 min.

6.1.4 Autres réglages

Sortie courant 1 et 2 (taille)

Dans le point de menu "Sortie de courant grandeur", vous définissez la grandeur de mesure délivrée par la sortie de courant.

La sélection suivante est possible en fonction de l'application choisie :

- Débit
- Hauteur couche d'interface
- Densité
- Pression différentielle
- Pression statique
- Pour cent
- Calibré(e)
- Pourcentage linéarisé
- Température de la cellule de mesure (cellule de mesure céramique)
- Température de l'électronique

Valeurs caractéristiques transmetteur de pression différentielle Ce point de menu vous permet de définir les unités pour l'organe déprimogène et de sélectionner le débit massique ou le débit volumique.

6 Mise en service avec le module de réglage et d'affichage

Réglage	
100 × =	1
	kg/s
0 % =	0
	kg/s

En plus, le réglage pour le débit volumique ou massique est effectué pour 0 % ou 100 %.

L'appareil additionne automatiquement le débit dans l'unité choisie. Avec un ajustement en conséquence et une linéarisation bidirectionnelle, le débit est compte aussi bien positivement que négativement.

7 Diagnostic, gestion des actifs et service

7.1 Entretien

Maintenance

Si l'on respecte les conditions d'utilisation, aucun entretien particulier ne sera nécessaire en fonctionnement normal.

Mesures contre les colmatages

Dans certaines applications, des colmatages sur la membrane peuvent influencer le résultat de la mesure. Prenez donc des mesures préventives selon le capteur et l'application, pour éviter des colmatages importants et surtout des encroûtements.

Nettoyage

Le nettoyage contribue à rendre visibles la plaque signalétique et les marquages sur l'appareil.

Respectez ce qui suit à cet effet :

- Utilisez uniquement des détergents qui n'attaquent pas le boîtier, la plaque signalétique et les joints.
- Appliquez uniquement des méthodes de nettoyage qui correspondent à l'indice de protection de l'appareil.

7.2 Nettoyer - raccordement hygiénique avec écrou flottant à encoche

Aperçu

Le raccordement hygiénique avec écrou flottant à encoche peut être désassemblé et la membrane nettoyée.

Le graphique suivant en présente la structure :

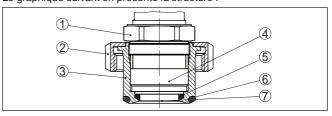


Fig. 29: CPT-2x, structure du raccord hygiénique avec écrou flottant à encoche

- 1 Six pans
- 2 Écrou flottant à encoche
- 3 Raccord process
- 4 Composants de raccordement au process
- 5 Joint profilé pour cellule de mesure
- 6 Joint torique pour raccord process
- 7 Membrane

Déroulement

Procédez de manière suivante à cet effet :

- Desserrer l'écrou flottant à encoche et sortir le capteur de pression du raccord à souder
- 2. Retirer le joint torique pour le raccord process
- 3. Nettoyer la membrane avec la brosse en laiton et le détergent
- Desserrer la vis hexagonale et sortir le module process du raccord process

- Sortir le joint moulé pour la cellule de mesure et le remplacer par un neuf
- Monter le module process dans le raccord process, serrer la vis hexagonale (taille de clé, consulter le chapitre "Dimensions", couple de serrage max. consulter le chapitre "Caractéristiques techniques")
- 7. Insérer un joint torique neuf pour le raccord process
- Monter le capteur de pression dans le raccord à souder, serrer l'écrou flottant à encoche

Cette opération termine le nettoyage.

Le capteur de pression est directement prêt à l'emploi, un nouvel ajustage n'est pas nécessaire.

7.3 Élimination des défauts

Comportement en cas de défauts

C'est à l'exploitant de l'installation qu'il incombe la responsabilité de prendre les mesures appropriées pour éliminer les défauts survenus.

Élimination des défauts

Premières mesures à prendre :

- Évaluation des messages d'erreur
- Vérification du signal de sortie
- Traitement des erreurs de mesure

Vous pouvez obtenir également d'autres possibilités de diagnostics à l'aide d'un ordinateur fixe/portable équipé du logiciel PACTware et du DTM approprié. Cela vous permettra, dans de nombreux cas, de trouver les causes des défauts et d'y remédier.

Comportement après élimination des défauts

Suivant la cause du défaut et les mesures prises pour l'éliminer, il faudra le cas échéant recommencer les étapes décrites au chapitre "Mise en service" ou vérifier leur plausibilité et l'intégralité.

7.4 Remplacement des composants de raccordement au process en cas de version IP68 (25 bars)

Pour la version IP68 (25 bar), l'utilisateur peut remplacer les composants de raccordement au process sur place. Le câble de raccordement et le boîtier externe peuvent être conservés.

Outils nécessaires :

• Clé pour vis à six pans creux de 2

Avertissement!

Le remplacement ne doit se faire qu'en état hors tension.

Pour les applications Ex, vous ne pouvez utiliser qu'une pièce échanqeable avec agrément Ex adéquat.

Avertissement!

Lors du remplacement, protéger la face intérieure des parties de la saleté et de l'humidité.

Procédez comme suit pour le remplacement :

- Desserrez la vis de fixation à l'aide d'une clé pour vis à six pans creux
- Retirer soigneusement le groupe de câbles des composants de raccordement au process

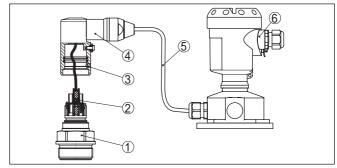


Fig. 30: CPT-2x en version IP68 25 bars, et sortie de câble latérale, boîtier externe

- 1 Composants de raccordement au process
- 2 Connecteur
- 3 Vis de fixation
- 4 Groupe de câbles
- 5 Câble de raccordement
- 6 Boîtier externe
- 3. Desserrez le connecteur
- 4. Monter les nouveaux composants de raccordement au process sur la voie de mesure
- 5. Assembler les connecteurs
- 6. Branchez le groupe de câbles aux composants de raccordement au process et tournez dans la position souhaitée
- 7. Serrer la vis de fixation à l'aide d'une clé pour vis à six pans creux Vous avez terminé ainsi le remplacement.

7.5 Réparation de l'appareil

Vous trouverez les indications concernant le renvoi de l'appareil dans la rubrique "Service" sur notre page Internet locale.

Si une réparation venait à s'imposer, contactez au préalable votre interlocuteur local :

- Remplir un formulaire pour chaque appareil
- Indiquer une éventuelle contamination
- Nettoyez et emballez l'appareil soigneusement de façon qu'il ne puisse être endommagé
- Prière de joindre à l'appareil le formulaire rempli et éventuellement une fiche de sécurité

8 Démontage

8.1 Étapes de démontage

Attention!

Avant de démonter l'appareil, prenez garde aux conditions de process dangereuses telles que pression dans la cuve ou la tuyauterie, hautes températures, produits agressifs ou toxiques, etc.

Suivez les indications des chapitres "Montage" et "Raccordement à l'alimentation en tension" et procédez de la même manière mais en sens inverse.

8.2 Recyclage

L'appareil se compose de matériaux recyclables par des entreprises spécialisées. À cet effet, l'électronique a été conçue pour être facilement détachable et les matériaux utilisés sont recyclables.

Directive DEEE

L'appareil ne tombe pas dans le champ d'application de la Directive UE WEEE. Selon l'article 2 de cette directive, les appareils électriques et électroniques en sont exclus lorsqu'ils font partie d'un autre appareil qui n'est pas couvert par le champ d'application de la directive. Il s'agit entre autres des installations industrielles stationnaires.

Menez l'appareil directement à une entreprise de recyclage, n'utilisez pas les points de collecte communaux.

Au cas où vous n'auriez pas la possibilité de faire recycler le vieil appareil par une entreprise spécialisée, contactez-nous. Nous vous conseillerons sur les possibilités de reprise et de recyclage.

9 Annexe

9.1 Caractéristiques techniques

Remarque relative aux appareils homologués

Dans le cas des appareils homologués (par ex. avec agrément Ex), ce sont les caractéristiques techniques dans les consignes de sécurité respectives qui s'appliquent. Celles-ci peuvent dévier des données répertoriées ici par ex. au niveau des conditions process ou de l'alimentation tension.

Tous les documents des agréments peuvent être téléchargés depuis notre page d'accueil.

Matériaux et poids

Matériaux, en contact avec le produit

Raccord process 316L, PVDF, Alloy C22 (2.4602), Alloy C276 (2.4819),

Duplex (1.4462), Titane Grade 2

Membrane Céramique saphir ® (céramique Al₂O₃ à > 99,9 %)

Matériau d'assemblage membrane/corps Verre (pour joint double et joint profilé sans contact avec

le produit)

Joint de la cellule de mesure FKM (VP2/A, A+P 70.16), EPDM (A+P 70.10-02), FFKM

(Kalrez 6375, Perlast G75S, Perlast G75B)

Joint pour raccord process (compris à la livraison)

- Filetage G½ (EN 837), G1½

de base cellule de mesure

Klingersil C-4400

(DIN 3852-A)

Raccord aseptique avec écrou flottant FKM, EPDM, FFKM, FEPM

- M44 x 1,25 (DIN 13), M30 x 1,5 FKM, FFKM, EPDM

Matériaux pour applications dans les secteurs alimentaires

Rugosité raccords hygiéniques, type.

- Raccord process $R_a < 0.8 \mu m$ - Membrane en céramique $R_a < 0.5 \mu m$

Joint d'étanchéité en dessous de la

EPDM

plaque de montage mural 316L en cas d'

agrément 3A

Matériaux, sans contact avec le produit

Boîtier

Boîtier en matière plastique
 Plastique PBT (polyester)

- Boîtier en aluminium coulé sous Aluminium coulé sous pression AlSi10Ma, revêtu de

pression poudre (Base : polyester)

Boîtier en acier inoxydable
 316L

Presse-étoupe
 PA, acier inoxydable, laiton

Joint d'étanchéité du presse-étoupeObturateur du presse-étoupePA

- Joint entre boîtier et couvercle du Silicone SI 850 R, NBR sans silicone

boîtier

Hublot couvercle du boîtier
 Polycarbonate (listé UL746-C), verre⁵⁾

⁵⁾ Verre avec boîtier en coulée de précision en aluminium et acier inoxydable

- Borne de mise à la terre 316L

Boîtier externe

 Boîtier Plastique PBT (Polyester), 316L - Socle, plaque de montage mural Plastique PBT (Polyester), 316L

- Joint d'étanchéité entre le socle et la

plaque de montage mural

EPDM (lié fixement)

Hublot sur le couvercle du boîtier Polycarbonate, UL746-C listé (sur version Ex-d : verre)

Joint entre boîtier et couvercle du boîtier Silicone SI 850 R, NBR sans silicone, EPDM (compa-

tible peinture)

Borne de mise à la terre 316Ti/316L Câble de connexion vers le capteur

maître

PE. PUR

Poids

Poids total CPT-2x env. 0,8 ... 8 kg (1.764 ... 17.64 lbs), en fonction du

raccord process et du boîtier

Couples de serrage

Couple de serrage maxi. pour raccord process

- G½, G¾ 30 Nm (22.13 lbf ft) - Raccods selon 3A avec joint inter-20 Nm (14.75 lbf ft)

changeable

- Raccord hygiénique avec écrou flot-40 Nm (29.50 lbf ft)

tant à encoche (hexagonal)

- G1, M30 x 1,5 50 Nm (36.88 lbf ft) - G1 pour PASVE 100 Nm (73.76 lbf ft) - G11/2 200 Nm (147.5 lbf ft)

Couple de serrage max. pour vis

- PMC 1". PMC 11/4" 2 Nm (1.475 lbf ft) - PMC 11/2" 5 Nm (3.688 lbf ft)

Couple de serrage max. pour presse-étoupes NPT et conduits

- Boîtier en matière plastique 10 Nm (7.376 lbf ft) - Boîtier en aluminium/acier inox 50 Nm (36.88 lbf ft)

Grandeur d'entrée

Les indications servent à un aperçu et se rapportent à la cellule de mesure. Des limitations dues au matériau et à la série du raccord process ainsi qu'au type de pression sélectionné sont possibles. Les indications de la plaque signalétique sont valables. 6)

⁶⁾ Les données sur la résistance de surcharge s'appliquent à la température de référence.

Plages de mesure nominales et résistance de surcharge en bar/kPa

Plage de mesure nominale	Résistance de surcharge	
	Pression maximale	Pression minimale
Surpression		
0 +0,025 bars/0 +2,5 kPa	+5 bar/+500 kPa	-0,05 bars/-5 kPa
(uniquement pour cellule de mesure ø 28 mm)		
0 +0,1 bar/0 +10 kPa	+15 bar/+1500 kPa	-0,2 bar/-20 kPa
0 +0,4 bars/0 +40 kPa	+30 bar/+3000 kPa	-0,8 bar/-80 kPa
0 +1 bar/0 +100 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa
0 +2,5 bars/0 +250 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa
0 +5 bar/0 +500 kPa	+65 bar/+6500 kPa	-1 bar/-100 kPa
0 +10 bar/0 +1000 kPa	+90 bar/+9000 kPa	-1 bar/-100 kPa
0 +25 bar/0 +2500 kPa	+125 bar/+12500 kPa	-1 bar/-100 kPa
0 +60 bar/0 +6000 kPa	+200 bar/+20000 kPa	-1 bar/-100 kPa
0 +100 bar/0 +10000 kPa	+200 bar/+20000 kPa	-1 bar/-100 kPa
(uniquement pour cellule de mesure ø 28 mm)		
-1 0 bar/-100 0 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa
-1 +1,5 bars/-100 +150 kPa	+40 bar/+4000 kPa	-1 bar/-100 kPa
-1 +10 bar/-100 +1000 kPa	+90 bar/+9000 kPa	-1 bar/-100 kPa
-1 +25 bar/-100 +2500 kPa	+125 bar/+12500 kPa	-1 bar/-100 kPa
-1 +60 bar/-100 +6000 kPa	+200 bar/+20000 kPa	-1 bar/-100 kPa
-1 +100 bar/-100 +10000 kPa	+200 bar/+20000 kPa	-1 bar/-100 kPa
(uniquement pour cellule de mesure ø 28 mm)		
-0,025 +0,025 bar/-2,5 +2,5 kPa	+5 bar/+500 kPa	-0,05 bars/-5 kPa
-0,05 +0,05 bars/-5 +5 kPa	+15 bar/+1500 kPa	-0,2 bar/-20 kPa
-0,2 +0,2 bars/-20 +20 kPa	+20 bar/+2000 kPa	-0,4 bars/-40 kPa
-0,5 +0,5 bars/-50 +50 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa
Pression absolue		
0 0,1 bar/0 10 kPa	15 bar/1500 kPa	0 bar abs.
0 1 bar/0 100 kPa	35 bar/3500 kPa	0 bar abs.
0 2,5 bars/0 250 kPa	50 bar/5000 kPa	0 bar abs.
0 +5 bar/0 +500 kPa	65 bar/+6500 kPa	0 bar abs.
0 10 bar/0 1000 kPa	90 bar/9000 kPa	0 bar abs.
0 25 bar/0 2500 kPa	125 bar/12500 kPa	0 bar abs.
0 60 bar/0 6000 kPa	200 bar/20000 kPa	0 bar abs.
0 100 bar/0 +10000 kPa	200 bar/20000 kPa	0 bar abs.
(uniquement pour cellule de mesure ø 28 mm)		

Plages de mesure nominales et résistance de surcharge en psi

Plage de mesure nominale	Résistance de surcharge	
	Pression maximale	Pression minimale
Surpression		
0 +0.4 psig (uniquement pour cellule de mesure ø 28 mm)	+75 psig	-0.7 psig
0 +1.5 psig	+225 psig	-3 psig
0 +5 psig	+375 psig	-11.50 psig
0 +15 psig	+525 psig	-14.51 psig
0 +30 psig	+725 psig	-14.51 psig
0 +75 psig	+975 psig	-14.51 psig
0 +150 psig	+1350 psig	-14.51 psig
0 +300 psig	+1900 psig	-14.51 psig
0 +900 psig	+2900 psig	-14.51 psig
0 +1450 psig (uniquement pour cellule de mesure ø 28 mm)	+2900 psig	-14.51 psig
-14.5 0 psig	+525 psig	-14.51 psig
-14.5 +20 psig	+600 psig	-14.51 psig
-14.5 +75 psig	+975 psig	-14.51 psig
-14.5 +150 psig	+1350 psig	-14.51 psig
-14.5 +300 psig	+1900 psig	-14.51 psig
-14.5 +900 psig	+2900 psig	-14.51 psig
-14,5 +1500 psig (uniquement pour cellule de mesure ø 28 mm)	+2900 psig	-14.51 psig
-0.7 +0.7 psig	+75 psig	-2.901 psig
-3 +3 psig	+225 psi	-5.800 psig
-7 +7 psig	+525 psig	-14.51 psig
Pression absolue		
0 1.5 psi	225 psig	0 psi
0 15 psi	525 psi	0 psi
0 30 psi	725 psi	0 psi
0 75 psi	975 psi	0 psi
0 150 psi	1350 psi	0 psi
0 300 psi	1900 psi	0 psi
0 900 psi	2900 psi	0 psi
0 1450 psig (uniquement pour cellule de mesure ø 28 mm)	2900 psi	0 psi

Plages de réglage

Les indications se rapportent à la plage de mesure nominale, les valeurs de pression inférieures à -1 bar ne peuvent pas être réglées.

Niveau (réglage min./max.)

Valeur en pourcent
 Valeur pression
 -120 ... 120 %

Débit (réglage min./max.)

Valeur en pourcentValeur pression0 ou 100 % fixe-120 ... 120 %

Pression différentielle (réglage span/zéro)

Zero-95 ... +95 %Span-120 ... +120 %

Densité (réglage min./max.)

- Valeur en pourcent -10 ... 100 %

Valeur de densité selon les plages de mesure en kg/dm³

Couche d'interface (réglage min./max.)

- Valeur en pourcent -10 ... 100 %

Valeur de hauteur selon les plages de mesure en m
 Turn Down max. admissible Illimité (recommandation 20 : 1)

Comportement dynamique - sortie

Grandeurs caractéristiques dynamiques, dépendent du produit et de la température

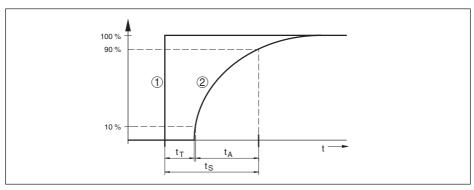


Fig. 31: Comportement en cas de variation brusque de la grandeur process. t_{τ} : temps mort ; $t_{\rm A}$: temps de montée ; $t_{\rm c}$: temps de réponse impulsionnelle

- 1 Grandeur de process
- 2 Signal de sortie

	CPT-2x	CPT-2x - IP68 (25 bar)
Temps mort	≤ 25 ms	≤ 50 ms
Temps de montée (10 90 %)	≤ 55 ms	≤ 150 ms

	CPT-2x	CPT-2x - IP68 (25 bar)
Temps de réponse impulsionnel (ti: 0 s, 10 90 %)	≤ 80 ms	≤ 200 ms

Atténuation (63 % de la grandeur d'entrée)

0 ... 999 s, réglable avec l'option du menu "atténuation"

Conditions de référence et grandeurs d'influence (selon DIN EN 60770-1)

Conditions de référence selon DIN EN 61298-1

- Température +15 ... +25 °C (+59 ... +77 °F)

- Humidité relative de l'air 45 ... 75 %

- Pression d'air 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Définition de la courbe caractéristique Réglage du point limite selon IEC 61298-2

Caractéristiques des courbes Linéaire

Position de montage de référence Debout, membrane orientée vers le bas

Influence de la position de montage < 0,2 mbars/20 Pa (0.003 psig)

Écart sur la sortie courant par de forts < ±150 μA champs magnétiques à haute fréquence

champs magnétiques à haute fréquence dans le cadre de la norme FN 61326-1

Écart de mesure (selon IEC 60770-1)

Les indications se rapportent à l'échelle de mesure réglée. Turn down (TD) est le rapport entre la plage de mesure nominale et l'échelle de mesure réglée.

Classe de précision	Non-linéarité, hystérésis et non-répétabilité pour TD 1 : 1 jusqu'à 5 : 1	Non-linéarité, hystérésis et non-répétabilité pour TD > 5 : 1
0,05 %	< 0,05 %	< 0,01 % x TD
0,1 %	< 0,1 %	< 0,02 % x TD
0,2 %	< 0,2 %	< 0,04 % x TD

Influence de la température du produit

Variation thermique du signal zéro et de l'échelle de sortie par la température du produit

Se fonde sur l'échelle de mesure réglée. Turn down (TD) est le rapport entre la plage de mesure nominale et l'échelle de mesure réglée.

La variation thermique du signal zéro et de l'échelle de sortie correspond à l'erreur de température F_{τ} dans le chapitre " *Calcul de l'écart total (selon DIN 16086)*".

Erreur de température de base F,

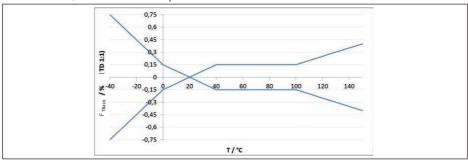


Fig. 32: Erreur de température de base F_{TBasis} avec TD 1 : 1

L'erreur de température de base en % dans le graphique ci-dessus peut augmenter du fait de facteurs complémentaires en fonction de la version de la cellule de mesure (facteur FMZ) et du Turn Down (facteur FTD). Les facteurs complémentaires sont répertoriés dans les tableaux suivants.

Facteur complémentaire du fait de la version de la cellule de mesure

	Cellule de mesure standard, suivant la classe de précision		
Version de la cellule de mesure	0,05 %, 0,1 %	0,2 % (avec plage de mesure 0,1 bar _{abs})	0,2 % 0,05 %, 0,1 % avec une plage de mesure de 25 mbar
Facteur FMZ	1	2	3

Facteur complémentaire par Turn Down

Le facteur supplémentaire FTD par Turn Down est calculé avec la formule suivante :

$$F_{TD} = 0.5 \times TD + 0.5$$

Le tableau reprend des valeurs à titre d'exemple pour des Turn Down typiques.

Turn Down	TD 1:1	TD 2,5 : 1	TD 5 : 1	TD 10:1	TD 20 : 1
Facteur FTD	1	1,75	3	5,5	10,5

Stabilité à long terme (conformément à DIN 16086)

Valable pour la sortie signal respective (par ex. HART, Profibus PA) **numérique** ainsi que pour la sortie courant **analogique** 4 ... 20 mA sous conditions de référence. Les indications se rapportent à l'échelle de mesure réglée. Turn down (TD) représente le rapport plage de mesure nominale/échelle de mesure réglée.

Stabilité à long terme du signal zéro et de l'échelle de sortie

	Cellule de mesure ø 28 mm		Cellule de mesure ø 17,5 mm		
Période	Plages de mesure à partir de 0 +0,1 bar (0 +10 kPa)	Plage de mesure 0 +0,025 bar (0 +2,5 kPa)	Tous les raccords process ⁷⁾	Raccord process G½ (ISO 228-1)	
Un an	< 0,05 % x TD	< 0,1 % x TD	< 0,1 % x TD	< 0,25 % x TD	
Cinq ans	< 0,1 % x TD	< 0,2 % x TD	< 0,2 % x TD	< 0,5 % x TD	
Dix ans	< 0,2 % x TD	< 0,4 % x TD	< 0,4 % x TD	< 1 % x TD	

Conditions de process

Température process⁸⁾

Joint de la cellule de me-		Versi	Version de capteur		
sure		Standard	Plage de température étendue ⁹⁾		
FKM	VP2/A	-20 +130 °C (-4 +266 °F)	-20 +150 °C (-4 +302 °F)		
	A+P 70.16	-40 +130 °C (-40 +266 °F)	-		
	Endura V91A	-40 +130 °C (-40 +266 °F)	-40 +150 °C (-40 +302 °F)		
	ET 7067	-20 +130 °C (-4 +266 °F)	-		
	V70SW	-	-10 +150 °C (14 +302 °F)		
EPDM	A+P 70.10-02	-40 +130 °C (-40 +266 °F)	-40 +150 °C (-40 +302 °F)		
	ET 7056	-40 +130 °C (-40 +266 °F)	-		
	E70Q	-	-40 +150 °C (-40 +302 °F)		
	Fluoraz SD890	-5 +130 °C (-22 +266 °F)	-		
FFKM	Kalrez 6375	-20 +130 °C (-4 +266 °F)	-20 +150 °C (-4 +302 °F)		
	Perlast G75S	-15 +130 °C (-4 +266 °F)	-15 +150 °C (5 +302 °F)		
	Perlast G75B	-15 +130 °C (-4 +266 °F)	-15 +150 °C (5 +302 °F)		
	Perlast G92E	-15 +130 °C (-4 +266 °F)	-15 +150 °C (5 +302 °F)		
	Chemraz 535	-30 +130 °C (-22 +266 °F)	-		

Derating de température

⁷⁾ sans raccord process G½ (ISO 228-1)

⁸⁾ Avec le raccord process PVDF, température process max. 100 °C (212 °F).

⁹⁾ Cellule de mesure ø 28 mm

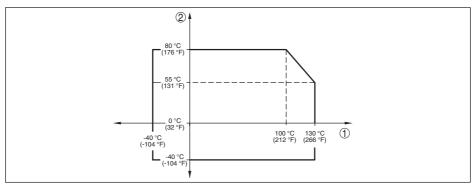


Fig. 33: Derating de température CPT-2x, version jusqu'à +130 °C (+266 °F)

- 1 Température process
- 2 Température ambiante

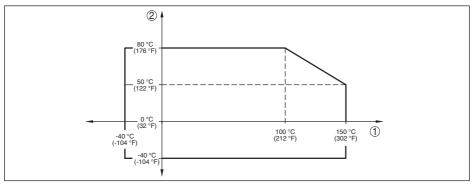


Fig. 34: Derating de température CPT-2x, version jusqu'à +150 °C (+302 °F)

- 1 Température process
- 2 Température ambiante

Température process SIP (SIP = Sterilization in place)

Concerne la configuration d'appareil appropriée pour la vapeur, autrement dit le matériau du joint de la cellule de mesure EPDM ou FFKM (Perlast G75S).

Alimentation en vapeur jusqu'à 2 h +150 °C (+302 °F)

Pression process

Pression process tolérée voir l'indication "process pressure" sur la plaque signa-

létique

Contrainte mécanique¹⁰⁾

Tenue aux vibrations 4 g à 5 ... 200 Hz selon EN 60068-2-6 (vibration avec

résonance)

Tenue aux chocs 50 g, 2,3 ms selon EN 60068-2-27 (choc mécanique)¹¹⁾

¹⁰⁾ En fonction de la version de l'appareil.

^{11) 2} g avec version de boîtier en acier inoxydable à deux chambres

Conditions ambiantes

Version	Température ambiante	Température de stockage et de transport
Version standard	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Version IP66/IP68 (1 bar)	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Version IP68 (25 bar), câble de raccordement PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Version IP68 (25 bars), câble de rac- cordement PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Caractéristiques électromécaniques - version IP66/IP67 et IP66/IP68 (0,2 bar)¹²⁾

Options de l'entrée de câble

- Entrée de câble M20 x 1,5; ½ NPT

- Presse-étoupe M20 x 1,5; ½ NPT (diamètre du câble voir tableau en

bas)

ObturateurM20 x 1,5; ½ NPT

Bouchon fileté
 ½ NPT

Matériau du presse-étoupe/insert de	Diamètre du câble			
joint	5 9 mm	6 12 mm	7 12 mm	
PA/NBR	•	•	-	
Laiton nickelé/NBR	•	•	-	
Acier inoxydable/NBR	-	-	•	

Section des conducteurs (bornes auto-serrantes)

- Âme massive/torsadée
 - Âme torsadée avec embout
 0,2 ... 2,5 mm² (AWG 24 ... 14)
 0,2 ... 1,5 mm² (AWG 24 ... 16)

Caractéristiques électromécaniques - version IP68 (25 bars)

Câble de raccordement capteur de valeur mesurée - boîtier externe, caractéristiques mécaniques

- Structure Fils, décharge de traction, capillaires compensateurs de

pression, tissage de blindage, film métallique, gaine¹³⁾

Longueur standard
 Longueur max.
 Rayon de courbure mini. à 25 °C/77 °F 25 mm (0.985 in)
 Diamètre
 5 m (16.40 ft)
 180 m (590.5 ft)
 env. 8 mm (0.315 in)

- Matériau PE DIID

MatériauPE, PURCouleurNoir, bleu

Câble de raccordement capteur de valeur mesurée - boîtier externe, caractéristiques électriques

- Section des conducteurs 0,5 mm² (AWG no. 20) - Résistance du conducteur 0.037 Ω /m (0.012 Ω /ft)

¹²⁾ IP66/IP68 (0,2 bar) uniquement pour la pression absolue.

¹³⁾ Capillaire de compensation de pression atmosphérique pas sur la version Ex-d.

Interface vers le capteur maître

Transmission des données numérique (bus l²C)

Câble de raccordement esclave - maître, caractéristiques mécaniques

- Structure Fils, amarrage de câble, tissage de blindage, film métal-

lique, gaine

Longueur standard
 Longueur max.
 5 m (16.40 ft)
 25 m (82.02 ft)

- Rayon de courbure mini. (à 25 mm (0.985 in)

25 °C/77 °F)

- Diamètre env. 8 mm (0.315 in), env. 6 mm (0.236 in)

MatériauCouleurNoir(e)

Câble de raccordement esclave - maître, caractéristiques électriques

- Section des conducteurs 0,34 mm² (AWG 22) - Résistance du conducteur $< 0,05 \Omega/m (0.015 \Omega/ft)$

Alimentation en tension pour tout le système par le maître

Tension de service

- U_{B min} 12 V DC - U_{B min} avec éclairage allumé 16 V DC

- U_{B may} en fonction de la sortie signal et de la version du capteur

maître

Connexions de potentiel et mesures de séparation électriques dans l'appareil

Électronique Non reliée au potentiel

Tension assignée¹⁴⁾ 500 V AC

Liaison conductrice Entre borne de mise à la terre et raccord process métal-

lique

Mesures de protection électrique

Matériau du boîtier	Version	Protection selon CEI 60529	Protection selon NEMA
Plastique		IP66/IP67	Type 4x
Aluminium		IP66/IP67	Type 4x
		IP66/IP68 (0,2 bar)	Type 6P
Acier inox (électropoli)	Chambre unique	IP66/IP67	Type 4x
		IP69K	-
Acier inox (moulage cire-perdue)		IP66/IP67	Type 4x
		IP66/IP68 (0,2 bar)	Type 6P
Acier inox	Capteur de mesure pour boîtier externe	IP68 (25 bar)	-

¹⁴⁾ Séparation galvanique entre l'électronique et les pièces métalliques de l'appareil

Altitude de mise en œuvre au-dessus du niveau de la mer

par défaut jusqu'à 2000 m (6562 ft)
 Avec protection contre la surtension jusqu'à 5000 m (16404 ft)

en amont sur le capteur maître

Degré de pollution¹⁵⁾ 4
Classe de protection (CEI 61010-1) II

9.2 Calcul de l'écart total

L'écart total d'un capteur de pression indique l'erreur de mesure maximale à laquelle on peut s'attendre dans la pratique. Cet écart est également appelé écart de mesure maximal pratique ou erreur d'utilisation.

Selon DIN 16086, l'écart total F_{total} est la somme de la déviation de base F_{perf} et de la stabilité à long terme F_{stab} :

$$F_{total} = F_{perf} + F_{stab}$$

La déviation de base F_{pert} est composée de la modification thermique du signal zéro et de la plage de sortie F_{τ} ainsi que de l'écart de mesure $F_{\kappa l}$:

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

La modification thermique du signal zéro et de la plage de sortie $F_{\scriptscriptstyle T}$ est indiquée dans le chapitre "Caractéristiques techniques". L'erreur de température de base $F_{\scriptscriptstyle T}$ y est représentée sous forme graphique. En fonction de la version de la cellule de mesure et du Turn Down cette valeur doit encore être multipliée avec les facteurs supplémentaires FMZ et FTD :

$$F_{T} \times FMZ \times FTD$$

Ces valeurs aussi sont indiquées au chapitre "Caractéristiques techniques".

Cela s'applique à une sortie numérique via HART, Profibus PA ou Foundation Fieldbus.

Avec une sortie 4 ... 20 mA, il s'y ajoute encore la modification thermique de la sortie électrique F_a:

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

Pour une vue plus claire, les symboles de formule sont regroupés ici :

- F_{total}: écart total
- F_{perf}: déviation de base
- F_{stab}: stabilité à long terme
- F_τ: changement thermique de signal zéro et de plage de sortie (erreur de température)
- F_{KI}: écart de mesure
- F
 : Variation thermique de la sortie courant
- FMZ : facteur complémentaire version de la cellule de mesure
- FTD : facteur complémentaire Turn Down

9.3 Exemple pratique

Données

Mesure du niveau dans un petit réservoir, une hauteur de 500 mm correspond à 0,049 bar (4,9 KPa), pression différentielle 0,35 bar (35 KPa), température du produit 40 °C

CPT-2x Capteur maître et capteur esclave respectivement avec une plage de mesure nominale de 0,4 bar (40 KPa), écart de mesure < 0,1 %, raccord process G1½ (cellule de mesure ø 28 mm)

Les valeurs nécessaires pour l'erreur de température $F_{_{T}}$, écart de mesure $F_{_{KI}}$ et stabilité à long terme

¹⁵⁾ En cas de mise en œuvre avec protection du boîtier remplie.

F_{tige} figurent dans les caractéristiques techniques.

1. Calcul du Turn Down

TD = 0.4 bar/0.049 bar, TD = 8.2 : 1

2. Détermination de l'erreur de température F,

La sonde de température $F_{_{T}}$ est composée de la sonde de température de base $F_{_{TBasis}}$, du facteur supplémentaire cellule de mesure $F_{_{MZ}}$ et du facteur supplémentaire Turn Down $F_{_{TD}}$.

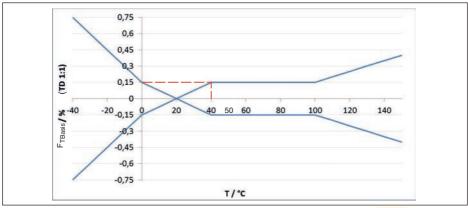


Fig. 35: Détermination de l'erreur de température de base pour l'exemple ci-dessus : $F_{TBase} = \frac{0,15 \%}{100}$

Version de la cellule de mesure	Cellule de mesure standard, suivant la classe de précision			
	0,05 %, 0,1 %	0,2 % (0,1 bar _{abs})	0,2 %	
Facteur FMZ	1	2	3	

Tab. 13: Détermination du facteur complémentaire cellule de mesure pour l'exemple ci-dessus : $F_{MZ} = \frac{1}{1}$

Le facteur supplémentaire FTD par Turn Down est calculé avec la formule suivante :

$$F_{TD} = 0.5 \text{ x TD} + 0.5$$
, avec TD = 8,2:1 du calcul ci-dessus

$$F_{TD} = 0.5 \times 8.2 + 0.5 = 4.6$$

Détermination de l'erreur de température du capteur maître pour l'exemple ci-dessus :

$$F_T = F_{TBasis} x F_{MZ} x F_{TD}$$

$$F_{T} = 0.15 \% \times 1 \times 4.6$$

$$F_{-} = 0.69 \%$$

L'erreur de température des capteurs est ainsi de 0,69 % respectivement

3. Détermination de l'écart de mesure et de la stabilité à long terme

Classe de précision	Non-linéarité, hystérésis et non-répétabilité.		
	TD ≤ 5:1	TD > 5:1	
0,05 %	< 0,05 %	< 0,01 % x TD	
0,1 %	< 0,1 %	< 0,02 % x TD	
0,2 %	< 0,2 %	< 0,04 % x TD	

Tab. 14: Détermination des écarts de mesure $F_{\kappa l}$ du tableau pour la classe de précision 0,1 %: $F_{\kappa l}$ = 0,02 % x TD = 0,02 % x 8,2 = 0,16 %

Période	Cellule de mesure ø 28 mm		Cellule de mesure ø 17,5 mm	
	Toutes les plages de mesure	Plage de mesure 0 +0,025 bar	Tous les raccords process	Raccord process G½ (ISO 228-1)
		(0 +2,5 kPa)		
Un an	< 0,05 % x TD	< 0,1 % x TD	< 0,1 % x TD	< 0,25 % x TD
Cinq ans	< 0,1 % x TD	< 0,2 % x TD	< 0,2 % x TD	< 0,5 % x TD
Dix ans	< 0,2 % x TD	< 0,4 % x TD	< 0,4 % x TD	< 1 % x TD

Tab. 15: Détermination de la stabilité à long terme F_{stab} du tableau, considération pour un an : F_{tige} 0,05 % x TD = 0,05 % x 8,2 = $\frac{0.41 \text{ %}}{0.41 \text{ %}}$

4. Calcul de l'écart total

- 1ère étape : déviation de base F neri

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

$$F_{\tau} = 0.69 \%$$

F_{ki}= 0,16 % (calcul du tableau ci-dessus)

$$F_{perf} = \sqrt{(0.69 \%)^2 + (0.16 \%)^2}$$

$$F_{perf} = 0.71 \%$$

- 2e étape : écart total F

$$F_{total} = F_{perf} + F_{stab}$$

 $F_{tige} = 0.41 \%$ (calcul du tableau ci-dessus)

$$F_{\text{total}} = 0.71 \% + 0.41 \% = 1.12 \%$$

L'écart total des capteurs est ainsi respectivement de 1,12 %.

5. Calcul de l'écart total du dispositif de mesure

Le calcul de l'écart total du dispositif de mesure inclut les deux capteurs. Avec des capteurs maîtres 4 ... 20 mA s'ajoute l'erreur thermique de la sortie électrique analogique :

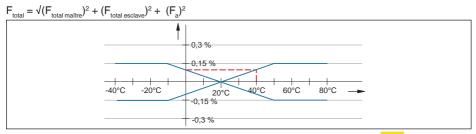


Fig. 36: F₂ par une modification thermique de la sortie électrique, dans le présent exemple = 0,1 %

$$F_{\text{total}} = \sqrt{(1,12 \%)^2 + (1,12 \%)^2 + (0,1 \%)^2} = 1,6 \%$$

L'écart total du dispositif de mesure est ainsi de 1,6 %.

Écart de mesure in mm: 1.6 % de 500 mm = 7.9 mm

L'exemple montre que l'erreur de mesure peut dans la pratique être sensiblement plus élevée que la

déviation de base. Les causes en sont l'effet de la température et le Turn Down. Le changement thermique de la sortie électrique est dans cet exemple négligeable.

9.4 Dimensions

Boîtier

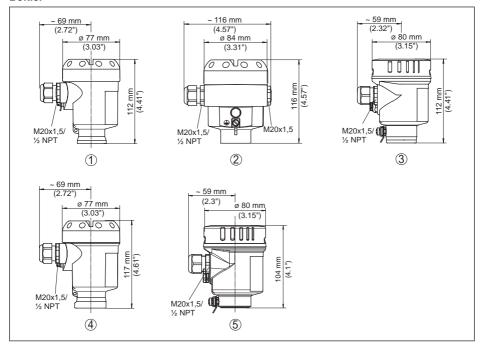


Fig. 37: Versions de boîtier en protection IP66/IP67 et IP66/IP68 (0,2 bars)

- 1 Chambre unique plastique (IP66/IP67)
- 2 Une chambre aluminium
- 3 Chambre unique en acier inoxydable (électropolie)
- 4 Chambre unique en acier inoxydable (moulage cire perdue)
- 5 Chambre unique en acier inoxydable (électropolie) IP69K

Boîtier externe pour version IP68 (25 bar)

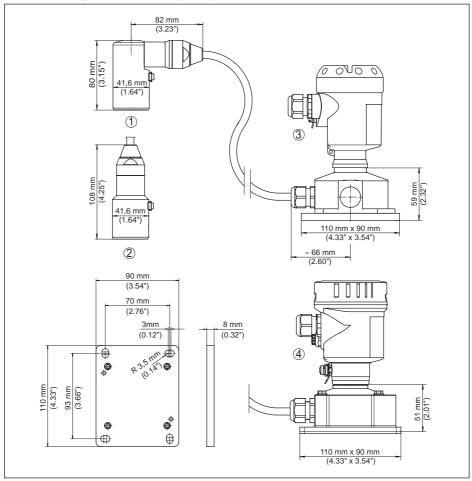


Fig. 38: Version IP68 avec boîtier externe

- 1 Départ de câble latéral
- 2 Sortie de câble axiale
- 3 Boîtier en matière plastique
- 4 Boîtier en acier inoxydable, électropoli

CPT-2x, raccord fileté non arasant

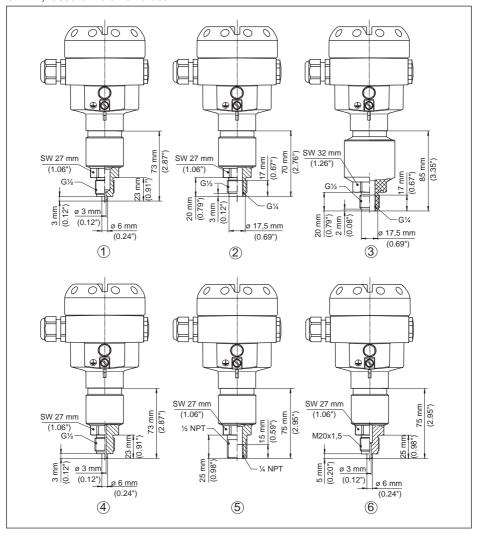


Fig. 39: CPT-2x, raccord fileté non arasant

- 1 Raccord manométrique G½ (EN 837)
- 2 G½ A intérieur G¼ (ISO 228-1)
- 3 G½ A intérieur G¼ A PVDF (ISO 228-1)
- 4 Raccord manométrique G½ à volume réduit (EN 837)
- 5 1/2 NPT intérieur 1/4 NPT
- 6 M20 x 1,5 raccord manométrique (EN 837)

CPT-2x, raccord fileté arasant

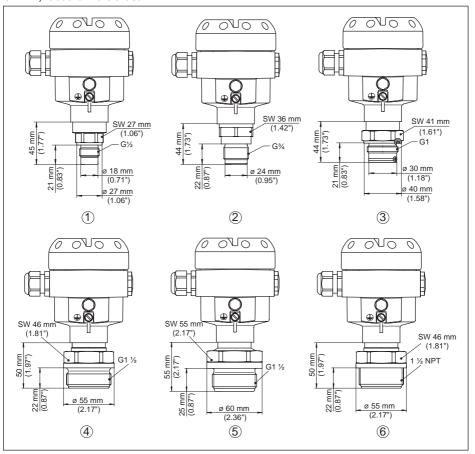


Fig. 40: CPT-2x, raccord fileté arasant

- 1 G½ (ISO 228-1)
- 2 G¾ (DIN 3852-E)
- 3 G1 A (ISO 228-1)
- 4 G1½ (DIN 3852-A)
- 5 G11/2 A PVDF (DIN 3852-A-B)
- 6 1½ NPT (ASME B1.20.1)

Pour la version avec plage de température jusqu'à 150 °C/302 °F, la longueur augmente de 28 mm (1.1 in).

CPT-2x, raccord aseptique

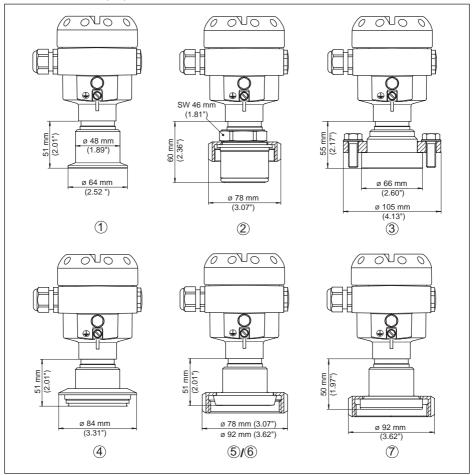


Fig. 41: CPT-2x, raccord aseptique

- 1 Clamp 2"
- 2 Raccord hygiénique avec écrou flottant à encoche F40
- 3 DRD
- 4 Tuchenhagen Varivent DN 32
- 5 Raccord union DN 40 selon DIN 11851
- 6 Raccord union DN 50 selon DIN 11851
- 7 Raccord union DN 50 selon DIN 11864-1

Pour la version avec plage de température jusqu'à $150 \, ^{\circ} \text{C}/302 \, ^{\circ} \text{F}$, la longueur augmente de 28 mm (1.1 in).

CPT-2x, raccord à bride

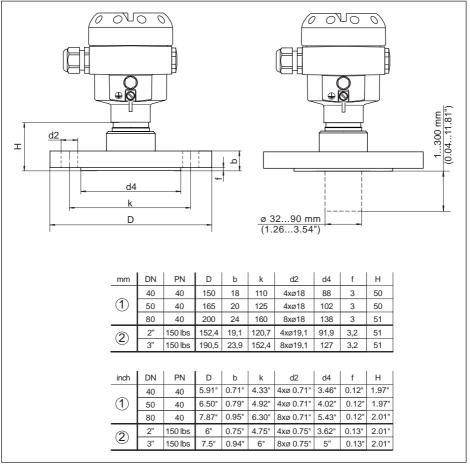


Fig. 42: CPT-2x, raccord à bride

- 1 Raccord à bride selon DIN 2501
- 2 Raccord à bride selon ASME B16.5

Pour la version avec plage de température jusqu'à 150 °C/302 °F, la longueur augmente de 28 mm (1.1 in).

CPT-2x, raccord à tube

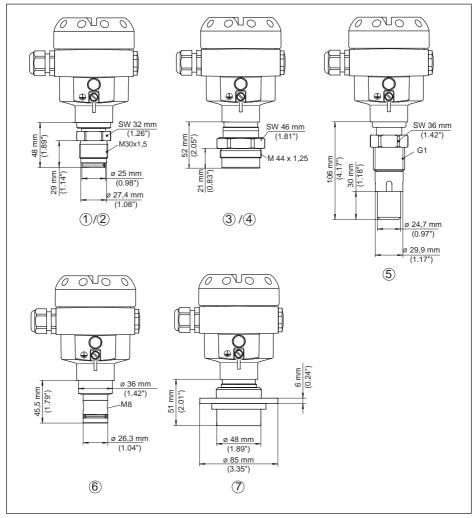


Fig. 43: CPT-2x, raccord à tube

- 1 M30 x 1,5 DIN 13; absolument arasant
- 2 M30 x 1,5 DIN 13; pour tête de caisse
- 3 M44 x 1,25 DIN 13; vis pression: aluminium
- 4 M44 x 1,25 DIN 13; vis pression: 316L
- 5 G1, ISO 228-1 approprié au PASVE
- 6 PMC 1" arasant PN 6
- 7 DN 48 avec bride de serrage

Pour la version avec plage de température jusqu'à 150 °C/302 °F, la longueur augmente de 28 mm (1.1 in).

CPT-2x, raccordement selon CEI 61518

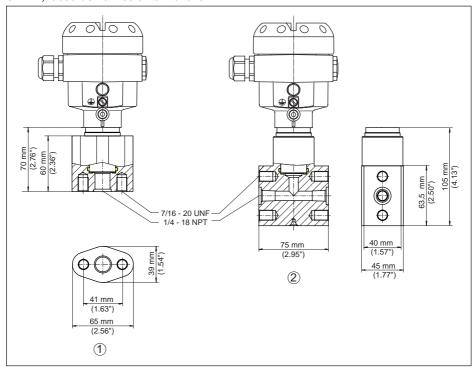


Fig. 44: CPT-2x, raccordement selon CEI 61518

- 1 Adaptateur pour bride ovale
- 2 Bride de couvercle

Pour la version avec plage de température jusqu'à 150 °C/302 °F, la longueur augmente de 28 mm (1.1 in).

9.5 Marque déposée

Toutes les marques utilisées ainsi que les noms commerciaux et de sociétés sont la propriété de leurs propriétaires/auteurs légitimes.

INDEX

Α

Al FB1 Function Block 43 Applications à oxygène 17

C

Channel 43

Compensation de pression 19

- -Ex d 18
- Second Line of Defense 18
- -Standard 18

Conception de joints d'étanchéité 10 Correction de position 34

D

Défaut

-Suppression 48

Е

Élimination des défauts 48 Exemple de paramétrage 35

l

Index suiveur 44

ı

Linéarisation 42

M

Maintenance 47

Mise en œuvre

- Mesure de densité 23
- Mesure de niveau 20, 24
- Mesure de pression différentielle 21
- Mesure d'interface 22

P

Passage étanche au gaz (Second Line of Defense) 18

R

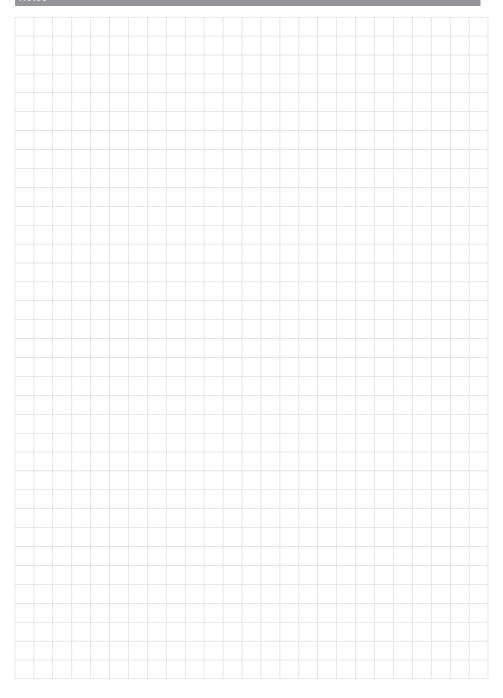
Raccordement

- -Étapes 28
- -Technique 28

Raccordement électrique 27

Réglage 36, 37, 38, 39, 40

- Niveau 41, 42
- -Unité 34


Régler l'affichage 43

S

Simulation 44 Sortie courant 45

V

Valeurs caractéristiques de l'organe déprimogène 45

Date d'impression:

Les indications de ce manuel concernant la livraison, l'application et les conditions de service des capteurs et systèmes d'exploitation répondent aux connaissances existantes au moment de l'impression.

WIKA Alexander Wiegand SE & Co. KG

Alexander-Wiegand-Straße 30 63911 Klingenberg Germany Phone (+49) 9372/132-0 Fax (+49) 9372 132-406

E-mail: info@wika.de

www.wika.de