Widerstandsthermometer für Rauchgastemperaturmessungen Mit Schutzrohr Typ TW81 Typ TR81

WIKA Datenblatt TE 60.81

weitere Zulassungen siehe Seite 2

Anwendungen

- Hochöfen, Winderhitzer
- Glüh-, Wärmebehandlungsprozesse
- Abfall-, Sondermüllverbrennung
- Heizungsgroßanlagen, Wärmeerzeugung

Leistungsmerkmale

- Anwendungsbereiche bis +600 °C [+1.112 °F]
- Schutzrohr aus hitzebeständigem Stahl
- Messeinsatz auswechselbar
- Gasdichter Prozessanschluss (Option)

Beschreibung

Diese geraden Widerstandsthermometer bestehen aus einem Anschlusskopf der Form B, einem Messeinsatz nach DIN 43735 und einem Schutzrohr Typ TW81. Neben DIN-Schutzrohren Form A oder C sind kundenspezifische Ausführungen möglich.

Mögliche Prozessanschlüsse sind Anschlagflansch oder Gewindemuffe, letztere kann einen gasdichten Anschluss realisieren.

Diese Thermometer eignen sich für gasförmige Medien im Niederdruckbereich (bis ca. 1 bar). Unterschiedliche Schutzrohrwerkstoffe mit oder ohne Emaillierung gewährleisten das Anpassen an die jeweilige thermische Beanspruchung.

Der Messeinsatz ist auswechselbar. So können Überprüfungen, Messmittelüberwachung oder im Servicefall ein Austausch während des Betriebs bei laufender Anlage durchgeführt werden. Die Wahl von Norm- oder Standardlängen wirkt sich günstig auf die Lieferzeit und eine evtl. Bevorratung von Ersatzteilen aus.

Widerstandsthermometer für Rauchgastemperaturmessungen, Typ TR81

Schutzrohrwerkstoff, Anschlusskopf und Sensor sind für die jeweilige Anwendung individuell wählbar.

Optional kann ein Transmitter eingebaut werden. Zu den Vorteilen eines eingebauten Transmitters zählen u.a. eine erhöhte Sicherheit der Signalweiterleitung.

WIKA Datenblatt TE 60.81 · 07/2019

Seite 1 von 10

Part of your business

Explosionsschutz (Option)

Die zulässige Leistung P_{max} sowie die zulässige Umgebungstemperatur für die jeweilige Kategorie der EG-Baumusterprüfbescheinigung bzw. dem Ex-Zertifikat oder der Betriebsanleitung entnehmen.

Achtung:

Nur mit entsprechend geeigneter Schutzarmatur ist der Einsatz in Staub-Ex-gefährdeten Bereichen zulässig.

Eingebaute Transmitter haben eine eigene EG-Baumusterprüfbescheinigung. Die zulässigen Umgebungstemperaturbereiche der eingebauten Transmitter sind der entsprechenden Transmitterzulassung zu entnehmen.

Zulassungen (Explosionsschutz, weitere Zulassungen)

Logo	Beschreibung	Land
C€	EU-Konformitätserklärung ■ EMV-Richtlinie ¹) EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich) ■ RoHS-Richtlinie	Europäische Union
€x>	■ ATEX-Richtlinie (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas [II 1G Ex ia IIC T1 T6 Ga] Zone 1 Anbau an Zone 0 Gas [II 1/2G Ex ia IIC T1 T6 Ga/Gb] Zone 1 Gas [II 2G Ex ia IIC T1 T6 Gb] Zone 20 Staub [II 1D Ex ia IIIC T125 T65 °C Da] Zone 21 Anbau an Zone 20 Staub [II 1/2D Ex ia IIIC T125 T65 °C Da/Db] Zone 21 Staub [II 2D Ex ia IIIC T125 T65 °C Db] - Ex e Zone 1 Gas [II 2G Ex eb IIC T1 T6 Gb] Zone 2 Gas [II 3G Ex ec IIC T1 T6 Gc X] Zone 21 Staub [II 2D Ex tb IIIC TX °C Db] Zone 22 Staub [II 3D Ex tc IIIC TX °C Dc X] - Ex n Zone 2 Gas [II 3G Ex nA IIC T1 T6 Gc X] Zone 22 Staub [II 3D Ex tc IIIC TX °C Dc X]	
IEC IEĈEX	IECEx (Option) - in Verbindung mit ATEX Explosionsgefährdete Bereiche - Ex i Zone 0 Gas [Ex ia IIC T1 T6 Ga]	International
ERCEx	EAC (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas [0 Ex ia IIC T6 T1 Ga X] Zone 1 Gas [1 Ex ia IIC T6 T1 Gb X] Zone 20 Staub [Ex ia IIIC T80 T440 °C Da X] Zone 21 Staub [Ex ia IIIC T80 T440 °C Db X] - Ex n Zone 2 Gas [Ex nA IIC T6 T1 Gc X]	Eurasische Wirtschaftsgemeinschaft
нмето	INMETRO (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas [Ex ia IIC T3 T6 Ga]	Brasilien

¹⁾ Nur bei eingebautem Transmitter

Logo	Beschreibung		Land
EX MEPS)	NEPSI (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas Zone 1 Anbau an Zone 0 Gas Zone 1 Gas	[Ex ia IIC T1 ~ T6 Ga] [Ex ia IIC T1 ~ T6 Ga/Gb] [Ex ia IIC T1 ~ T6 Gb]	China
E s	KCs - KOSHA (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas Zone 1 Gas	[Ex ia IIC T4 T6] [Ex ib IIC T4 T6]	Südkorea
-	PESO (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas Zone 1 Anbau an Zone 0 Gas Zone 1 Gas	[Ex ia IIC T1 T6 Ga] [Ex ia IIC T1 T6 Ga/Gb] [Ex ia IIC T1 T6 Gb]	Indien
	DNOP - MakNII (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas	[II 1G Ex ia IIC T3 T6 Ga] [II 1/2G Ex ia IIC T3 T6 Ga/Gb] [II 2G Ex ia IIC T3 T6 Gb] [II 1D Ex ia IIIC T125 T65 °C Da] [II 1/2D Ex ia IIIC T125 T65 °C Da/Db] [II 2D Ex ia IIIC T125 T65 °C Db]	Ukraine
©	GOST (Option) Metrologie, Messtechnik		Russland
6	KazInMetr (Option) Metrologie, Messtechnik		Kasachstan
-	MTSCHS (Option) Genehmigung zur Inbetriebnahme		Kasachstan
(BelGIM (Option) Metrologie, Messtechnik		Weißrussland
•	UkrSEPRO (Option) Metrologie, Messtechnik		Ukraine
	Uzstandard (Option) Metrologie, Messtechnik		Usbekistan

Herstellerinformationen und Bescheinigungen

Logo	Beschreibung
SIL	SIL 2 Funktionale Sicherheit (nur in Verbindung mit Temperaturtransmitter Typ T32)
NAMUR	NAMUR NE24 Explosionsgefährdete Bereiche (Ex i)

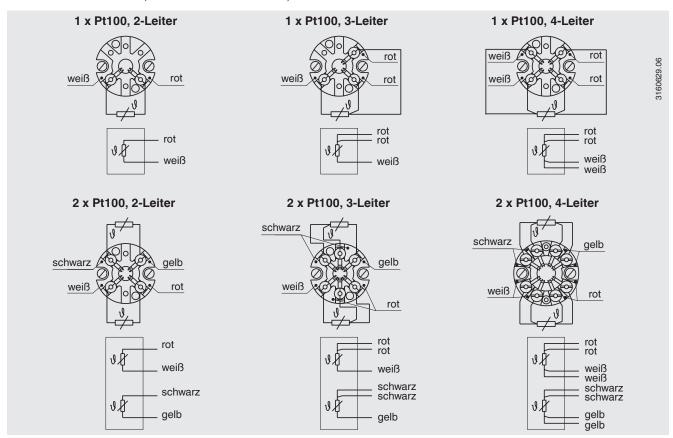
Mit "ia" gekennzeichnete Geräte dürfen auch in Bereichen eingesetzt werden, welche nur "ib" oder "ic" gekennzeichnete Geräte erfordern. Wird ein Gerät mit Kennzeichnung "ia" in einem Bereich mit Anforderungen nach "ib" oder "ic" eingesetzt, darf es anschließend nicht mehr in Bereichen mit Anforderungen nach "ia" betrieben werden.

Zulassungen und Zertifikate siehe Internetseite

Sensor

Messelement

Pt100 (Messstrom: 0,1 ... 1,0 mA) 1)


Schaltungsart					
Einfach-Elemente	1 x 2-Leiter 1 x 3-Leiter 1 x 4-Leiter				
Doppel-Elemente	2 x 2-Leiter 2 x 3-Leiter 2 x 4-Leiter ²⁾				

Genauigkeitsklasse / Einsatzbereich des Sensors nach EN 60751					
Klasse	Sensorbauart				
	Drahtgewickelt Dünnschi				
Klasse B	-196 +600 °C	-50 +500 °C			
Klasse A 3)	-100 +450 °C	-30 +300 °C			
Klasse AA 3)	-50 +250 °C	0 150 °C			

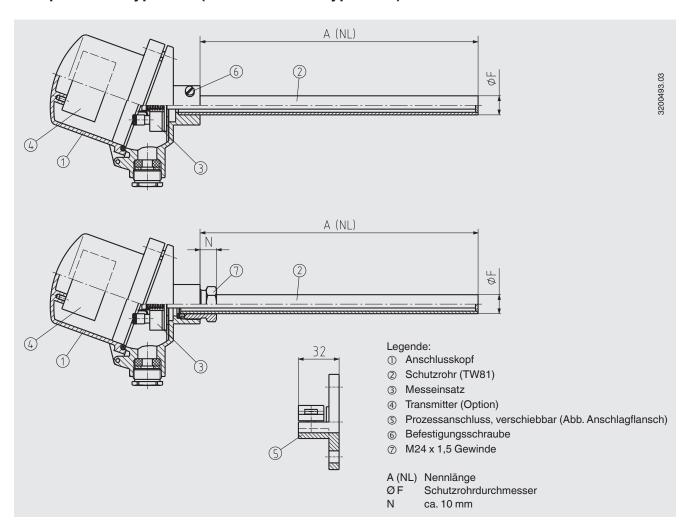
- 1) Detaillierte Angaben zu Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de.
- 2) Nicht bei Durchmesser 3 mm
- 3) Nicht bei Schaltungsart 2-Leiter

Die Tabelle zeigt die in der jeweiligen Norm aufgeführten Temperaturbereiche, in denen die Grenzabweichungen (Klassengenauigkeiten) gültig sind.

Elektrischer Anschluss (Farbcode nach IEC/EN 60751)

Die elektrischen Anschlüsse eingebauter Temperaturtransmitter den entsprechenden Datenblättern bzw. Betriebsanleitungen entnehmen.

Messeinsatz


Der Messeinsatz ist aus vibrationsunempfindlicher Mantelmessleitung (MI-Leitung) gefertigt.

Der Messeinsatz kann mittels zweier Schrauben und Federn in einem Anschlusskopf (Form B) auswechselbar und gefedert montiert werden.

Wichtig beim Einbau in ein Schutzrohr ist die Ermittlung der korrekten Einbaulänge (= Schutzrohrlänge bei Bodenstärken ≤ 5,5 mm). Zu beachten ist dabei, dass der Messeinsatz gefedert ist (Federweg: max. 10 mm) um eine Anpressung auf den Schutzrohrboden zu gewährleisten.

Der Standardwerkstoff des Messeinsatzmantels ist CrNi-Stahl. Andere Werkstoffe auf Anfrage.

Komponenten Typ TR81 (mit Schutzrohr Typ TW81)

Anschlusskopf

BSZ

BSZ-H

BSZ BSZ-H

Тур	Werkstoff	Gewindegröße Kabeleingang	Schutzart ¹⁾	Deckelverschluss	Oberfläche
BS	Aluminium	M20 x 1,5	IP53, IP65	Deckel mit 2 Schrauben	Blau, lackiert 2)
BSZ	Aluminium	M20 x 1,5	IP53, IP65	Klappdeckel mit Zylinderschraube	Blau, lackiert 2)
BSZ-H	Aluminium	M20 x 1,5	IP53, IP65	Klappdeckel mit Zylinderschraube	Blau, lackiert 2)

¹⁾ IP53: seitliche Befestigungsschrauben IP65: M24 x 1,5 Gewinde

Transmitter (Option)

Der Transmitter kann direkt in das Thermometer eingebaut werden. Beachtet werden muss die zulässige Umgebungstemperatur des Transmitters gemäß dessen Datenblattes. Wir empfehlen den Einbau des Transmitters in den Deckel eines Anschlusskopfes Typ BSZ-H. Hier wird der Sensor indirekt an den Transmitter mit einer Anschlussleitung zwischen Anschlusssockel und Transmitter angeschlossen.

Anschlusskopf	Transmitter Typ			
	T15	T32	T53	T91.10
BS	-	-	-	-
BSZ	-	-	-	-
BSZ-H	•	•	•	•

- Montage im Deckel des Anschlusskopfes
- Montage ist aus thermischen Gründen nicht empfehlenswert

Тур	Beschreibung	Datenblatt
T15	Digitaler Transmitter, PC-konfigurierbar	TE 15.01
T32	Digitaler Transmitter, HART®-Protokoll	TE 32.04
T53	Digitaler Transmitter FOUNDATION™ Fieldbus und PROFIBUS® PA	TE 53.01
T91.10	Analoger Transmitter, fester Messbereich	TE 91.01

²⁾ RAL 5022

Schutzrohr Typ TW81

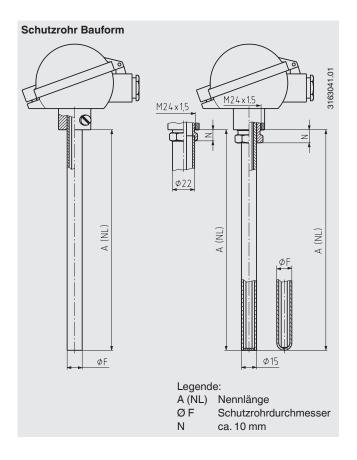
Metallschutzrohr

Das Schutzrohr ist aus Rohr gefertigt. Der Schutzrohrboden ist plan oder gekümpelt, bei emailliertem Metallschutzrohr immer gekümpelt. Das Schutzrohr ist in den Anschlusskopf eingesteckt und geklemmt.

Zusätzlich bieten wir die Möglichkeit mit einem auf dem Schutzrohr verschraubten Kopf an. Somit wird der Schutzgrad IP65 erreicht. Ein verschiebbarer Prozessanschluss wird auf dem Schutzrohr fest geklemmt, dadurch ist die Einbaulänge variabel.

Norm-Nennlängen nach DIN EN 50446 bevorzugen.

Norm-Nennlängen


A = 500, 710, 1.000, 1.400, 2.000 mm Andere auf Anfrage

Schutzrohrwerkstoffe

- Stahl 1.0305 unlegiert
 bis 550 °C (Luft), geringe Beständigkeit gegen schwefelhaltige Gase, mittlere Beständigkeit gegen stickstoffhaltige Gase
- Stahl 1.0305 unlegiert, emailliert
 bis 550 °C, druckbelastbar bis max. 1 bar, für den Niederdruckbereich in Öfen und Rauchgaskanälen
- CrNi-Stahl 1.4571 bis 700 °C ¹¹ (Luft), gute Beständigkeit bei aggressiven Medien
- CrNi-Stahl 1.4841 bis 1.150 °C ¹) (Luft), geringe Beständigkeit gegen schwefelhaltige Gase; große Beständigkeit gegen stickstoffhaltige, sauerstoffarme Gase; hohe Zeitstandsfestigkeit
- CrNi-Stahl 1.4762
 bis 1.200 °C ¹) (Luft), große Beständigkeit gegen schwefelhaltige Gase; geringe Beständigkeit gegen stickstoffhaltige Gase

Andere Werkstoffe auf Anfrage

1) Bitte beachten: Die maximale Einsatztemperatur wird begrenzt durch den maximalen Anwendungsbereich des Sensors (Pt100: +600 °C).

Abmessungen in mm

Metallschutzrohr					
Außendurchmesser	Wandstärke				
ØF	s				
22	2				
15	2				

Hinweise für die Auswahl und Verwendung der Metallschutzrohre

Die folgende Tabelle erhebt keinen Anspruch auf Vollständigkeit. Alle Hinweise sind unverbindlich und stellen keine zugesagte Eigenschaft dar. Sie sind kundenseitig unter dem Gesichtspunkt des jeweiligen Einsatzfalles genau zu überprüfen.

Bitte beachten:

Die maximale Einsatztemperatur wird begrenzt durch den maximalen Anwendungsbereich des Sensors.

Beständigkeit bei Berührung mit Gasen

Werkstoff	AISI	Anwendbar	Beständigkeit gegen			
Nr.	Nr.	in Luft	· ·		Sticksotffhaltige,	Aufkohlung
		bis °C	Oxydierend	Reduzierend	sauerstoffarme Gase	
1.0305	-	550	niedrig	gering	mittel	gering
1.4571	316Ti	800	gering	gering	mittel	mittel
1.4762	-	1.200	sehr groß	groß	gering	mittel
1.4841	310/314	1.150	sehr gering	sehr gering	groß	gering

Verwendung in Gasen

Werkstoff Nr.	Einsatzgebiet
1.0305 (St35.8)	Anlassöfen in Wärmebehandlungsanlagen, Verzinnungs-, Verzinkungsanlagen, Kohlenstaub-Luft-Gemisch-Leitung in Dampfkraftwerken
1.0305 emailliert (St35.8 emailliert)	Rauchgasentschwefelungsanlagen, Lagermetall-, Blei- und Zinnschmelzen
1.4762 X 10 CrAISi 25	Verbrennungsabgase, Zement- und Keramiköfen, Wärmebehandlungsanlagen, Kühlöfen
1.4749 X 18 CrNi 28	Abgaskanäle, Glühöfen
1.4841 X 15 CrNiSi 25-21	Feuerräume, Industrieöfen, Petrochemie, Winderhitzer, Cyanbäder

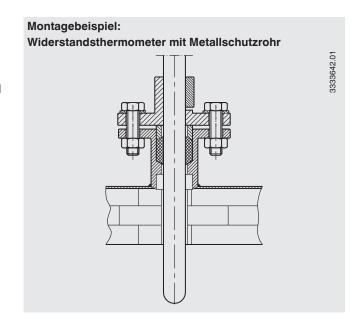
Prozessanschluss

Nicht gasdicht

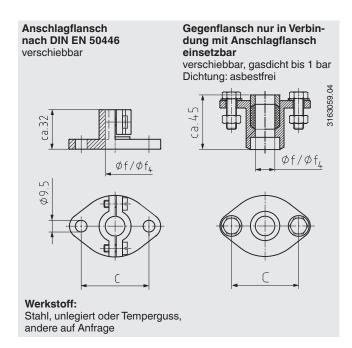
Es genügt ein Anschlagflansch, ein Gegenflansch ist nicht notwendig. Der Anschlagflansch ist auf dem Schutzrohr verschiebbar und wird mit einer Klemmung befestigt. Dadurch ist die Einbaulänge des Thermometers variabel und kann an der Montagestelle einfach verändert werden.

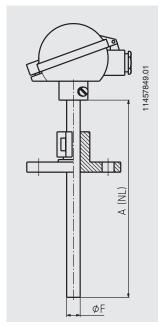
Gasdicht bis 1 bar

Benötigt wird eine Gewindemuffe oder eine Kombination Anschlagflansch - Gegenflansch.


■ Gewindemuffe

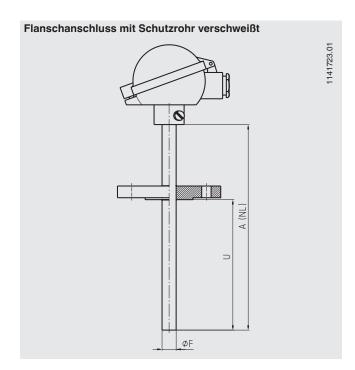
Diese wird auf dem Metallschutzrohr durch Klemmung befestigt. Nach dem Lösen ist ein Verschieben auf dem Schutzrohr möglich. Die Einbaulänge des Thermometers ist variabel und kann an der Montagestelle einfach verändert werden.


Anschlagflansch - Gegenflansch
 Gedichtet wird mittels Stopfbuchse zwischen Gegenflansch und Schutzrohr. Befestigt wird mittels Klemmung zwischen Anschlagflansch und Schutzrohr.
 Die Einbaulänge des Thermometers ist variabel.


Emailliertes Schutzrohr

Bei der Verwendung eines emaillierten Schutzrohres ist eine Gewindemuffe zu verwenden, damit die Emailschicht nicht beschädigt wird.

Gewindemuffe verschiebbar, gasdicht bis 1 bar Dichtung: asbestfrei, bis max. 300 °C höhere Temperaturen auf Anfrage Werkstoff: Stahl, unlegiert oder CrNi-Stahl 1.4571


Wählbare Gewindemuffen

Schutzrohr	Maße in mm		Prozessanschluss
Außen-Ø	Ø f/f ₄ i min.		E
22	22,5	20	G 1, 1 G 1½
15	15,5	20	G ½, G ¾, G 1

Andere Gewinde auf Anfrage

Wählbare Anschlagflansche

Schutzrohr	Maße in mm	
Außen-Ø	Ø f/f ₄	C (Lochstand)
22	22,5	70
15	15,5	55

Wählbare Flanschgrößen

Flanschdurchmesser	Werkstoff
1 ½ inch, 150 lbs, RF	CrNi-Stahl 316
1 ½ inch, 300 lbs, RF	CrNi-Stahl 316
2 inch, 150 lbs, RF	CrNi-Stahl 316
2 inch, 300 lbs, RF	CrNi-Stahl 316
3 inch, 150 lbs, RF	CrNi-Stahl 316
3 inch, 300 lbs, RF	CrNi-Stahl 316
4 inch, 150 lbs, RF	CrNi-Stahl 316
4 inch, 300 lbs, RF	CrNi-Stahl 316

Andere Flanschgrößen auf Anfrage

Bestellangaben

Typ / Sensor / Anschlusskopf / Transmitter / Zeugnisse / Optionen

© 07/2009 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

WIKA Datenblatt TE 60.81 · 07/2019

Seite 10 von 10

Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 Fax +49 9372 132-406

info@wika.de www.wika.de