Hochtemperatur-Thermoelement Typ TC82

WIKA Datenblatt TE 65.82

weitere Zulassungen siehe Seite 2

Anwendungen

- Chemie, Petrochemie
- Schwefelrückgewinnungsanlagen ("Sulphur Recovery Units (SRU)")
- Winderhitzer

Leistungsmerkmale

- Spülanschluss zur Verlängerung der Lebensdauer des Thermoelementes (Option)
- Erhöhte Sicherheit durch ein internes Dichtungssystem
- Hohe Varianz von Schutzrohrwerkstoffen
- Mit Temperaturtransmitter oder Feldtransmitter lieferbar
- Fest eingebautes Display im Anschlusskopf möglich

Hochtemperatur-Thermoelement mit Spülsystem, Typ TC82-F

Beschreibung

Speziell für den Einsatz in explosionsgefährdeten Anwendungen wurde dieses Hochtemperatur-Thermoelement entwickelt. Ein Schutzrohr aus einer Hochtemperatur-Keramik oder Siliziumkarbid, mit oder ohne zusätzlichem Innenrohr, schützt das Thermoelement gegen das Prozessmedium sowie gegen mechanische Beschädigungen.

Für besonders kritische Anwendungen wie z. B. Entschwefelungsanlagen ("sulfur recovery units") empfehlen wir Ausführungen mit Spülgasanschluss, um das Thermoelement vor Vergiftung durch die aggressive Prozessatmosphäre zu schützen.

Hermetisch dichte Verbindungen verhindern ein Austreten toxischer Gase aus dem Reaktor. Die hohen Temperaturen während des Prozesses stellen sehr hohe Ansprüche an Schutzrohre und Thermoelemente. Diese Prozessbedingungen führen häufig zu Abschaltungen und Störungen im Betrieb. Durch die spezielle Konstruktion dieses Ex-zugelassenen Hochtemperatur-Thermometers können die Lebensdauer des Thermoelementes wesentlich erhöht und die Stillstandszeiten verringert werden.

WIKA Datenblatt TE 65.82 · 07/2021

Seite 1 von 9

Zulassungen

Logo	Beschreibung	Land
CE	EU-Konformitätserklärung ■ EMV-Richtlinie ¹) EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich)	Europäische Union
	■ RoHS-Richtlinie	
	■ ATEX-Richtlinie (Option) Explosionsgefährdete Bereiche II 2/-G Ex db IIC T6 T1 Gb/- II 2/-G Ex db IIC Gb/-	
IEC IECEX	IECEx (Option) - in Verbindung mit ATEX Explosionsgefährdete Bereiche Ex db IIC T6 T1 Gb/- Ex db IIC Gb/-	International
EH[Ex	EAC (Option) Explosionsgefährdete Bereiche	Eurasische Wirtschaftsge- meinschaft
©	GOST (Option) Metrologie, Messtechnik	Russland
6	KazInMetr (Option) Metrologie, Messtechnik	Kasachstan
(BelGIM (Option) Metrologie, Messtechnik	Belarus
•	UkrSEPRO (Option) Metrologie, Messtechnik	Ukraine
	Uzstandard (Option) Metrologie, Messtechnik	Usbekistan

¹⁾ Nur bei eingebautem Transmitter

Herstellerinformationen und Bescheinigungen

Logo	Beschreibung
SIL	SIL 2 Funktionale Sicherheit (nur in Verbindung mit Temperaturtransmitter Typ T32)

Zulassungen und Zertifikate siehe Internetseite

Sensor

Sensortypen

Тур	Betriebstemperaturen des Thermoelementes				
	IEC 60584-1		ASTM E230		
	Klasse 2	Klasse 1	Standard	Spezial	
K	-40 +1.200 °C [-40 +2.192 °F]	-40 +1.000 °C [-40 +1.832 °F]	0 1.260 °C [32 2.300 °	F]	
J	-40 +750 °C [-40 +1.382 °F]	-40 +750 °C [-40 +1.382 °F]	0 760 °C [32 1.400 °F]		
E	-40 +900 °C [-40 +1.652 °F]	-40 +800 °C [-40 +1.472 °F]	0 870 °C [32 1.598 °F]		
N	-40 +1.200 °C [-40 +2.192 °F]	-40 +1.000 °C [-40 +1.832 °F]	0 1.260 °C [32 2.300 °	F]	
R	0 1.600 °C [32 2.912 °F]	0 1.600 °C [32 2.912 °F]	0 1.480 °C [32 2.696 °	F]	
S	0 1.600 °C [32 2.912 °F]	0 1.600 °C [32 2.912 °F]	0 1.480 °C [32 2.696 °	F]	
В	600 1.700 °C [1.112 3.092 °F]	L	870 1.700 °C [1.598 3.092 °F]	-	

Die Temperaturbereiche können durch das Schutzrohrmaterial begrenzt sein.

Der tatsächliche Anwendungsbereich dieser Thermometer ist durch die zulässige Höchsttemperatur des Thermoelementes sowie durch die zulässige Höchsttemperatur des Schutzrohrmaterials begrenzt.

Detaillierte Angaben zu Thermoelementen siehe IEC 60584-1, IEC 60584-3 bzw. ASTM E230 und Technische Information IN 00.23 unter www.wika.de.

Grenzabweichung

Bei der Grenzabweichung von Thermoelementen ist eine Vergleichsstellentemperatur von 0 °C [32 °F] zugrunde gelegt.

Gelistete Typen sind als Einfach-Thermoelement oder als Doppel-Thermoelement lieferbar. Wenn nicht ausdrücklich anders angegeben, wird das Thermoelement mit isolierter Messstelle geliefert.

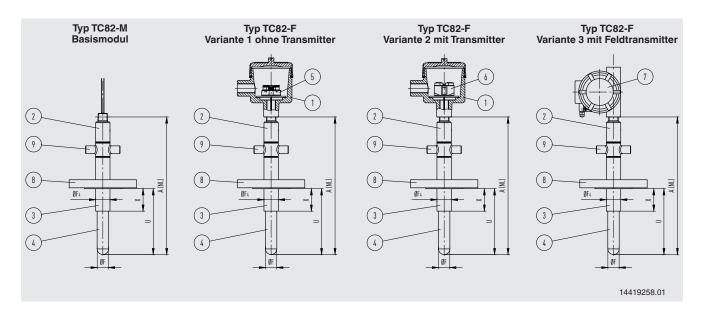
Halsrohr, Halterohr

Das Halsrohr ist in den Anschlusskopf eingeschraubt. Die Halslänge ist abhängig vom Verwendungszweck. Üblicherweise wird mit dem Halsrohr/Halterohr eine Isolation überbrückt. Auch dient das Halsrohr/Halterohr in vielen Fällen als Kühlelement zwischen Anschlusskopf und Messstoff, auch um eventuell eingebaute Transmitter vor hohen Messstofftemperaturen zu schützen.

Technische Daten	
Werkstoff	
Halsrohr	CrNi-Stahl
Halterohr	CrNi-Stahl 310446Legierung 600
Anschlussgewinde zum Kopf	■ Einstellbare Kontermutter M20 x 1,5 ■ 1/2 NPT
Halsrohr-/Halterohrlänge	Min. 270 mm [10,6 in] Min. 300 mm [12 in] bei Ausführung mit Spülrohr Längere Ausführungen auf Anfrage
Prozessdruck	Max. 1,5 bar [22 psi]

Prozessanschluss

Prozessanschluss			
Nenngörße			
ASME	1 ½" 6"		
EN 1092-1	DN 40 DN 100		
Druckstufen			
ASME	150 1.500 lbs		
EN 1092-1	PN 40 PN 100		
Dichtfläche	Nach ASME B16.5 oder EN 1092-1		


Flansche nach weiteren Standards auf Anfrage

Prüfungen (Option)

- Kalibrierung bei 3 Prüfpunkten (900 °C [1.652 °F], 1.000 °C [1.832 °F] und 1.100 °C [2.012 °F])
- Kalibrierung bei 3 Prüfpunkten (1.000 °C [1.832 °F], 1.200 °C [2.192 °F] und 1.400 °C [2.552 °F])

Weitere Prüfungen auf Anfrage.

Komponenten Typ TC82

Legende:

① Anschlusskopf② HalsrohrA (NL) NennlängeU Einbaulänge

3 Metallisches Halterohr
X Halterohrlänge unterhalb Prozessanschluss

Schutzrohr

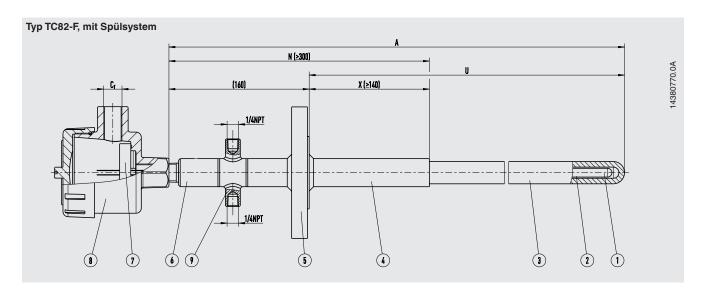
⑤ Klemmsockel

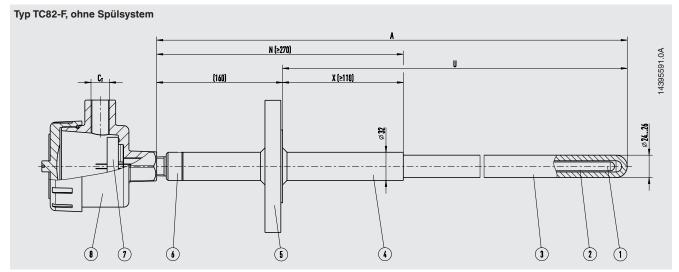
6 Transmitter (Option)

⑦ Feldtransmitter

Prozessanschluss

9 Spülung (Option)


Abmessungen in mm


Metallisches Halterohr: Ø 32 mm [1,259 in]

Keramikschutzrohr: Ø 24 ... 26 mm [0,945 ... 1,024 in]

Einbaulänge U: Typischerweise zwischen 300 ... 1.000 mm [12 ... 39 in]

Andere Werkstoffe und Abmessungen auf Anfrage

Legende:

A (NL) Nennlänge U Einbaulänge

N (L₄) Halsrohr-/Halterohrlänge

X Halsrohr-/Halterohrlänge unterhalb Prozessanschluss

Ø F Außendurchmesser Schutzrohr

Ø F₄ Halterohrdurchmesser

- ① Thermopaar
- ② Innenschutzrohr Keramik
- 3 Außenschutzrohr Keramik
- Metallisches Halterohr
- ⑤ Prozessanschluss
- 6 Halsrohr
- Klemmsockel/Transmitter (Option)
- Anschlusskopf
- Spülanschluss 1/4 NPT

Keramikschutzrohr

Keramikschutzrohre bestehen aus gebrannter Aluminiumoxidkeramik, die Spitze ist kugelförmig. Wegen der geringen mechanischen Festigkeit wird ein metallenes Halterohr verwendet, um den Prozessanschluss am Thermometer zu befestigen.

Das Keramikschutzrohr ist in das Halterohr mit einer feuerfesten Keramikmasse einzementiert. Das Halterohr ist in den Anschlusskopf eingeschraubt.

Werkstoffe für Keramikschutzrohre

- Keramik C 530 nicht gasdicht, feinporig, sehr beständig gegen Temperaturänderungen, verwendbar bis 1.600 °C [2.912 °F], wird nicht von Gasen angegriffen Wird als Außenschutzrohr in Verbindung mit einem gasdichten Innenschutzrohr verwendet
- Gasdichte Keramik C610
 bis 1.500 °C [2.732 °F], nicht beständig gegen Alkalidämpfe
- Gasdichte, hochreine Keramik C 799
 bis 1.600 °C [2.912 °F], jedoch nur bedingt temperaturwechselbeständig, nicht beständig gegen Alkalidämpfe
- Gasdichtes Siliziumkarbid (Hexaloy®) bis 1.650 °C [3.000 °F]

weitere Werkstoffe auf Anfrage

Innenrohr (optional)

Ist das äußere Schutzrohr für den Typ TC82 aus der nicht gasdichten Keramik C 530, sollte es mit einem gasdichten Innenrohr kombiniert werden, um das Thermoelement gegen aggressive Gase zu schützen.

Dadurch werden Veränderungen der thermoelektrischen Eigenschaften des Thermoelements vermieden und darüber hinaus die Lebensdauer des Thermometers allgemein verlängert.

Werkstoffe für Innenrohr

- Gasdichte Keramik C610
 bis 1.500 °C [2.732 °F], nicht beständig gegen Alkalidämpfe
- Gasdichte, hochreine Keramik C 799
 bis 1.600 °C [2.912 °F], jedoch nur bedingt temperaturwechselbeständig, nicht beständig gegen Alkalidämpfe

Ausführung mit Keramikschutzrohr

Je nach verwendeter Keramik kann die obere Betriebstemperaturgrenze der Keramikschutzrohre bis zu 1.600 °C [2.912 °F] betragen, höhere Temperaturen auf Anfrage. Als Sensor wird üblicherweise ein Thermoelement aus Edelmetall verwendet (Typen R, S und B).

Zur Messung von Temperaturen über 1.200 °C [2.192 °F] kann als Sensor nur ein Edelmetall-Thermoelement verwendet werden.

Bei Thermoelementen aus Edelmetall besteht jedoch die Gefahr einer "Vergiftung" mit Fremdstoffen. Diese Gefahr nimmt mit steigender Temperatur zu. Deshalb sollten bei Temperaturen über 1.200 °C [2.192 °F] gasdichte Keramik, vorzugsweise hochreines C 799, verwendet werden. Zusätzlich wird ein Gasspülsystem empfohlen.

Anschlusskopf

1/4000

5/6000

7/8000

andere Anschlussgehäuse 1)

Тур	Werkstoff	Kabeleinführung	Schutzart	Deckelverschluss	Oberflächenbeschaffenheit
1/4000 F	Aluminium	½ NPT, M20 x 1,5	IP66 ²⁾	Schraubdeckel	Blau, lackiert 3)
1/4000 S	CrNi-Stahl	½ NPT, M20 x 1,5	IP66 ²⁾	Schraubdeckel	Blank
5/6000 W	Aluminium	½ NPT, M20 x 1,5	IP66 ²⁾	Schraubdeckel	Blau, lackiert 3)
5/6000 S	CrNi-Stahl	½ NPT, M20 x 1,5	IP66 ²⁾	Schraubdeckel	Blank
7/8000 W	Aluminium	½ NPT, M20 x 1,5	IP66 ²⁾	Schraubdeckel	Blau, lackiert 3)
7/8000 S	CrNi-Stahl	½ NPT, M20 x 1,5	IP66 ²⁾	Schraubdeckel	Blank

¹⁾ Liste aller möglichen Anschlussgehäuse siehe Anhang der Explosionszertifikate.

Feld-Temperaturtransmitter mit digitaler **Anzeige (Option)**

Feld-Temperaturtransmitter, Typen TIF50, TIF52

Anstelle eines Standard-Anschlusskopfes kann das Thermometer optional mit dem Feld-Temperaturtransmitter Typ TIF50 bzw. TIF52 ausgeführt werden.

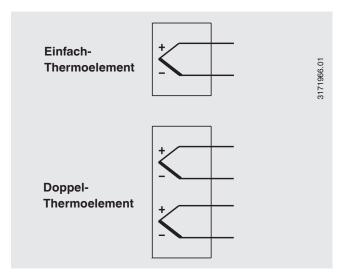
Der Feld-Temperaturtransmitter beinhaltet einen

4 ... 20 mA/HART®-Protokoll-Ausgang und ist mit einem LCD-Anzeigemodul bestückt.

Typ TIF50: HART®-Slave Typ TIF52: HART®-Master

Feld-Temperaturtransmitter, Typen TIF50, TIF52

Transmitter (Option)


Optional werden Transmitter aus dem WIKA-Programm im Anschlusskopf des TC82 montiert.

Ausgangssignal 4 20 mA, HART®-Protokoll				
Transmitter (auswählbare Ausführungen)	T32	TIF50, TIF52		
Datenblatt	TE 32.04	TE 62.01		
Ausgang				
4 20 mA	х	х		
HART®-Protokoll	х	х		
Anzeige	х	х		
Galvanische Trennung	Х	х		

Weitere Transmitter auf Anfrage

²⁾ Die angegebene Schutzart gilt nur für TC82 mit entsprechender Kabelverschraubung und passenden Kabelabmessungen. 3) RAL 5022

Elektrischer Anschluss

Die elektrischen Anschlüsse eingebauter Temperaturtransmitter den entsprechenden Datenblättern bzw. Betriebsanleitungen entnehmen.

Funktionale Sicherheit (Option)

In sicherheitskritischen Applikationen ist die gesamte Messkette in Bezug auf die sicherheitstechnischen Parameter zu betrachten. Die SIL-Klassifizierung erlaubt die Bewertung der durch die Sicherheitseinrichtungen erreichten Risikoreduzierung.

Ausgewählte TC82 Prozess-Thermoelemente in Verbindung mit einem entsprechenden Temperaturtransmitter (z. B. Typ T32.1S) eignen sich als Sensoren für Sicherheitsfunktionen bis SIL 2.

Einsatzbedingungen

Umgebungs- und Lagertemperatur

-60 ¹⁾ / -40 ... +80 °C [-76 ¹⁾ / -40 ... +176 °F]

1) Sonderausführung auf Anfrage (nur mit ausgewählten Zulassungen verfügbar)

Andere Umgebungs- und Lagertemperaturen auf Anfrage

Schutzart

IP66 nach IEC/EN 60529

Die angegebene Schutzart gilt nur für TC82-F mit entsprechendem Anschlusskopf, Kabelverschraubung und passenden Kabelabmessungen.

Zertifikate/Zeugnisse (Option)

Zeugnisart	Mess- genauigkeit	Materialzertifikat für messstoffberührte metallische Bauteile
2.2-Werkszeugnis	x	X
3.1-Abnahme- prüfzeugnis	х	х

Die verschiedenen Zeugnisse sind miteinander kombinierbar.

Die Mindestlänge (keramischer Teil des Fühlers) zur Durchführung einer Messgenauigkeitsprüfung 3.1 oder DAkkS für Standardausführungen beträgt 350 mm [13,78 in]. Kalibrierung von Geräten mit Keramiklängen von 200 mm [7,87 in] bis 350 mm [13,78 in] auf Anfrage.

Bestellangaben

Typ / Sensor / Sensorspezifikation / Betriebsbereich des Thermometers / Messpunkt / Klemmenkasten / Gewindegröße und Kabeleinführung / Transmitter / Halsrohrausführung / Gehäuseanschluss, Anschlusskopf / Halsrohrlänge N(M_H) / Einbaulänge A / Messeinsatz / Optionen

© 07/2021 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

WIKA Datenblatt TE 65.82 · 07/2021

Seite 9 von 9

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany

Tel. +49 9372 132-0 Fax +49 9372 132-406

info@wika.de www.wika.de